2701 Loker Ave. West, Suite 220, Carlsbad, CA 92010 Bus: 760-827-1100 Fax: 760-827-1099

Windward Environmental, LLC 200 West Mercer Street, Suite 401 Seattle, WA 98119 ATTN: Amara Vandervort amarav@windwardenv.com

November 24, 2020

SUBJECT: Revised Duwamish AOC4, Data Validation

Dear Ms. Vandervort,

Enclosed are the revised validation reports for the fractions listed below. These SDGs were received on November 4, 2020. Attachment 1 is a summary of the samples that were reviewed for each analysis.

LDC Project #49590_RV1:

SDG #	<u>Fraction</u>
2010181, 2010192, 2010211	Semivolatiles, Hexachlorobenzene, Polychlorinated
2010216, 2010226, 2010233	Biphenyls, Metals, Wet Chemistry, Polychlorinated
2010239	Dioxins/Dibenzofurans

The data validation was performed under Stage 2B & 4 guidelines. The analyses were validated using the following documents, as applicable to each method:

- Final Lower Duwamish Waterway Quality Assurance Project Plan for Remedial Design of Upper Reach: Pre-Design Investigation; May 2020
- USEPA National Functional Guidelines for Organic Superfund Methods Data Review;
 January 2017
- USEPA National Functional Guidelines for Inorganic Superfund Methods Data Review;
 January 2017
- USEPA National Functional Guidelines for High Resolution Superfund Methods Data Review; April 2016
- EPA SW 846, Third Edition, Test Methods for Evaluating Solid Waste, update 1, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IIIA, April 1998; IIIB, November 2004; update IV, February 2007; update V, July 2014

Please feel free to contact us if you have any questions.

Sincerely,

Pei Geng

pgeng@lab-data.com

Project Manager/Senior Chemist

780 pages-ADV 2 WEEK TAT Attachment 1

S	age 2B/4 (client Select	EDD	LD	C #	495	590	(W	ind	wai	rd E	nv	iror	ıme	nta	l, LL	.C -	Se	att	le V	۷A	/ Dı	ıwa	mi	sh .	AO	C4)									
LDC	SDG#	DATE REC'D	(3) DATE DUE		OA 70E)	(82	OA 70E IM)	Pε	1) est 81B)	PC (808	:Bs 32A)	Me ⁻ (602	tals 20A)	Met (602 UCT-		H (747	g /1B)	Dio:	xins 3B)	TC (906		To Sol (254													
Mat	rix: Water/Sediment			W	s	W	s	W	s	W	s	W	s	W	S	W	s	W	S	W	s	W	s	W	s	W	s	W	s	W	s	W	s	W	S
Α	2010181	11/04/20	11/18/20	0	7	0	4	0	2	0	20	0	2	0	2	0	3	0	5	0	20	0	20									Ш	Ш		
В	2010192	11/04/20	11/18/20	0	2	0	2	_	-	0	19	_	-	0	2	0	1	0	6	0	20	0	20									\square			
С	2010211	11/04/20	11/18/20	0	2	-	-	_	_	0	20	_		-	-	0	4	0	6	0	20	0	20									\square			
D	2010216	11/04/20	11/18/20	0	1	0	4	0	1	0	19	0	1	0	3	0	3	-	-	0	19	0	19										Ш		
E	2010226	11/04/20	11/18/20	_	-	0	14	_	-	0	6	-		0	1	-	-	0	3	0	7	0	8												
F	2010233	11/04/20	11/18/20	_		0	8	_	<u> </u>	0	18	_	-	0	3	-	-	0	6	0	18	0	18									\square	Ш		_
G	2010239	11/04/20	11/18/20	0	1	0	4	-	_	0	14	0	3	0	4	0	3	0	4	0	15	0	15									\square			
																				24												\square			
																																Ш	Ш		
																																\square	Ш		
									i.									-7		0	(
																																	Ш		
																																\square	Ш		
																																Ш	Ш		
																																\square	Ш		
																																	Ш		
																																Ш	Ш		
																																\square	Ш		
																																	Ш		
												2																							
																																	Ш		
otal	J/PG			0	13	0	36	0	3	0	116	0	6	0	15	0	14	0	30	0	119	0	120	0	0	0	0	0	0	0	0	0	0	0	472

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Duwamish AOC4

LDC Report Date: November 16, 2020

Parameters: Semivolatiles

Validation Level: Stage 4

Laboratory: Analytical Resources, Inc.

Sample Delivery Group (SDG): 2010181

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
LDW20-SS384	2010181-01	Sediment	06/29/20
LDW20-SS384DL	20I0181-01DL	Sediment	06/29/20
LDW20-SS385	2010181-02	Sediment	06/29/20
LDW20-SS267	2010181-09	Sediment	06/30/20
LDW20-SS260	2010181-10	Sediment	06/30/20
LDW20-SS229	2010181-13	Sediment	06/30/20
LDW20-SS227	2010181-14	Sediment	06/30/20
LDW20-SS384MS	2010181-01MS	Sediment	06/29/20
LDW20-SS384MSD	20I0181-01MSD	Sediment	06/29/20
LDW20-SS267MS	20I0181-09MS	Sediment	06/30/20
LDW20-SS267MSD	20I0181-09MSD	Sediment	06/30/20
LDW20-SS229MS	2010181-13MS	Sediment	06/30/20
LDW20-SS229MSD	2010181-13MSD	Sediment	06/30/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Lower Duwamish Waterway Quality Assurance Project Plan for Remedial Design of Upper Reach: Pre-Design Investigation (May 2020) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Semivolatile Organic Compounds (SVOCs) by Environmental Protection Agency (EPA) SW 846 Method 8270E

All sample results were subjected to Stage 4 data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

A decafluorotriphenylphosphine (DFTPP) tune was performed at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0% for all compounds.

Average relative response factors (RRF) for all compounds were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 30.0% for all compounds.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all compounds with the following exceptions:

Date	Compound	%D	Associated Samples	Flag	A or P
10/06/20	Indeno(1,2,3-cd)pyrene Dibenzo(a,h)anthracene Benzo(g,h,i)perylene	29.2 23.7 37.2	LDW20-SS384 LDW20-SS385	J (all detects) J (all detects) J (all detects)	A

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks with the following exceptions:

Blank ID	Extraction Date	Compound	Concentration	Associated Samples
BIJ0046-BLK1	10/02/20	Benzofluoranthenes, total	11.7 ug/Kg	LDW20-SS229 LDW20-SS227

Sample concentrations were compared to concentrations detected in the laboratory blanks. The sample concentrations were either not detected or were significantly greater than the concentrations found in the associated laboratory blanks with the following exceptions:

Sample	Sample Compound		Modified Final Concentration
LDW20-SS229	V20-SS229 Benzofluoranthenes, total		11.6U ug/Kg

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits with the following exceptions:

Sample	Surrogate	%R (Limits)	Affected Compound	Flag	A or P
LDW20-SS385	Nitrobenzene-d5 Terphenyl-d14	28.1 (30-120) 22.4 (37-120)	All compounds	J (all detects) UJ (all non-detects)	Р

VIII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Compound	MS (%R) (Limits)	MSD (%R) (Limits)	Flag	A or P
LDW20-SS384MS/MSD (LDW20-SS384 LDW20-SS384DL)	Naphthalene 2-Methylnaphthalene Acenaphthene Fluorene Anthracene Benzo(a)anthracene Chrysene Benzofluoranthenes, total Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Benzo(g,h,i)perylene	-44.0 (43-120) 11.6 (43-120) -14.8 (45-120) -11.3 (45-120) -54.3 (45-120) -149 (49-120) -76.1 (30-160) -178 (42-120) -77.1 (42-123) -114 (38-126)	-42.7 (43-120) 13.4 (43-120) -10.6 (45-120) -6.82 (45-120) -52.2 (45-120) -151 (49-120) -194 (47-120) -73.1 (30-160) -174 (42-120) -71.5 (42-123) -117 (38-126)	J (all detects)	A

For LDW20-SS384MS/MSD, no data were qualified for phenanthrene, fluoranthene, and pyrene percent recoveries (%R) outside the QC limits since the parent sample results were greater than 4X the spike concentration.

Relative percent differences (RPD) were within QC limits.

IX. Laboratory Control Samples/Standard Reference Materials

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits with the following exceptions:

LCS ID	Compound	%R (Limits)	Associated Samples	Flag	A or P
BIJ0031-BS1	Indeno(1,2,3-cd)pyrene Dibenzo(a,h)anthracene	143 (42-123) 136 (30-133)	LDW20-SS384 LDW20-SS384DL LDW20-SS385	J (all detects) J (all detects)	Р

Standard reference materials (SRM) were analyzed as required by the method. The results were within QC limits.

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Compound Quantitation

All compound quantitations were within validation criteria.

XIII. Target Compound Identifications

All target compound identifications were within validation criteria.

XIV. System Performance

The system performance was acceptable.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

In the case where more than one result was reported for an individual sample, the least technically acceptable results were deemed not reportable as follows:

Sample	Compound	Reason	Flag	A or P
LDW20-SS384	Phenanthrene Fluoranthene Pyrene	Results exceeded calibration range.	Not reportable	-
LDW20-SS384DL	All compounds except Phenanthrene Fluoranthene Pyrene	Results from undiluted analyses were more usable.	Not reportable	-

Due to continuing calibration %D, surrogate %R, MS/MSD %R, and LCS %R, data were qualified as estimated in two samples.

Due to laboratory blank contamination, data were qualified as not detected in one sample.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable.

Duwamish AOC4 Semivolatiles - Data Qualification Summary - SDG 2010181

Sample	Compound	Flag	A or P	Reason
LDW20-SS384 LDW20-SS385	Indeno(1,2,3-cd)pyrene Dibenzo(a,h)anthracene Benzo(g,h,i)perylene	J (all detects) J (all detects) J (all detects)	А	Continuing calibration (%D)
LDW20-SS385	All compounds	J (all detects) UJ (all non-detects)	Р	Surrogates (%R)
LDW20-SS384	Naphthalene 2-Methylnaphthalene Acenaphthene Fluorene Anthracene Benzo(a)anthracene Chrysene Benzofluoranthenes, total Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Benzo(g,h,i)perylene	J (all detects)	A	Matrix spike/Matrix spike duplicate (%R)
LDW20-SS384 LDW20-SS385	Indeno(1,2,3-cd)pyrene Dibenzo(a,h)anthracene	J (all detects) J (all detects)	Р	Laboratory control samples (%R)
LDW20-SS384	Phenanthrene Fluoranthene Pyrene	Not reportable	-	Overall assessment of data
LDW20-SS384DL	All compounds except Phenanthrene Fluoranthene Pyrene	Not reportable	-	Overall assessment of data

Duwamish AOC4 Semivolatiles - Laboratory Blank Data Qualification Summary - SDG 2010181

Sample	Compound	Modified Final Concentration	A or P
LDW20-SS229	Benzofluoranthenes, total	11.6U ug/Kg	А

Duwamish AOC4
Semivolatiles - Field Blank Data Qualification Summary - SDG 2010181

No Sample Data Qualified in this SDG

LDC #:_	49590A2a	VALIDATION COMPLETENESS WORKSHEET
SDG #:	2010181	Stage 4

Stage 4

Reviewer: 2nd Reviewer:

Laboratory: Analytical Resources, Inc.

METHOD: GC/MS Semivolatiles (EPA SW 846 Method 8270E)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
<u>I.</u>	Sample receipt/Technical holding times	A	
11.	GC/MS Instrument performance check	A	
<u>III.</u>	Initial calibration/ICV	AA	PSO=2070. 1ex=3070
IV.	Continuing calibration	W	ac/= 20/0
V.	Laboratory Blanks	M	
VI.	Field blanks	N	
VII.	Surrogate spikes	W	
VIII.	Matrix spike/Matrix spike duplicates	SW	
IX.	Laboratory control samples	WA	105
X.	Field duplicates	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
XI.	Internal standards	A	
XII.	Compound quantitation RL/LOQ/LODs	A	
XIII.	Target compound identification	A	
XIV.	System performance	\forall	
XV.	Overall assessment of data	M	

A = Acceptable Note:

N = Not provided/applicable SW = See worksheet

ND = No compounds detected

R = Rinsate

FB = Field blank

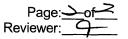
D = Duplicate TB = Trip blank

EB = Equipment blank

SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1)	LDW20-SS384	2010181-01	Sediment	06/29/20
2	LDW20-SS384DL	2010181-01DL	Sediment	06/29/20
3 1	LDW20-SS385	2010181-02	Sediment	06/29/20
4 2	LDW20-SS267 ##A	2010181-09	Sediment	06/30/20
₅ 2	LDW20-SS260	2010181-10	Sediment	06/30/20
67	LDW20-SS229	2010181-13	Sediment	06/30/20
77	LDW20-SS227	2010181-14	Sediment	06/30/20
8	LDW20-SS384MS	2010181-01MS	Sediment	06/29/20
9	LDW20-SS384MSD	2010181-01MSD	Sediment	06/29/20
10	LDW20-SS267MS	2010181-09MS	Sediment	06/30/20
11	LDW20-SS267MSD	2010181-09MSD	Sediment	06/30/20
123	LDW20-SS229MS	2010181-13MS	Sediment	06/30/20
137	LDW20-SS229MSD	2010181-13MSD	Sediment	06/30/20
14	BIT0031. BIJ0109 BIJ0046			

VALIDATION FINDINGS CHECKLIST


Page: / of // Reviewer:

Method: Semivolatiles (EPA SW 846 Method 8270D)

Validation Area	Yes	No	NA	Findings/Comments
I. Technical holding times				
Were all technical holding times met?	/			
Was cooler temperature criteria met?				
II. GC/MS Instrument performance check				
Were the DFTPP performance results reviewed and found to be within the specified criteria?	/	·		
Were all samples analyzed within the 12 hour clock criteria?				
Illa. Initial calibration				
Did the laboratory perform a 5 point calibration prior to sample analysis?				
Were all percent relative standard deviations (%RSD) ≤ 20% and relative response factors (RRF) within method criteria?				
Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit acceptance criteria of \geq 0.990?				
IIIb. Initial Calibration Verification				
Was an initial calibration verification standard analyzed after each initial calibration for each instrument?	/			
Were all percent differences (%D) ≤ 30%?	/			
IV. Continuing calibration				
Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?		_		
Were all percent differences (%D) \leq 20% and relative response factors (RRF) within method criteria?		/		
V. Laboratory Blanks				
Was a laboratory blank associated with every sample in this SDG?	/			
Was a laboratory blank analyzed at least once every 12 hours for each matrix and concentration?				-
Was there contamination in the laboratory blanks? If yes, please see the blanks validation findings worksheet.				
VI. Field blanks				
Were field blanks were identified in this SDG?			+	
Were target compounds detected in the field blanks?				
VII. Surrogate spikes				
Were all surrogate percent recovery (%R) within QC limits?	Ø			
If 2 or more base neutral or acid surrogates were outside QC limits, was a reanalysis performed to confirm %R?				
If any percent recoveries (%R) was less than 10%, was a reanalysis performed to confirm %R?				
VIII. Matrix spike/Matrix spike duplicates				
Were matrix spike (MS) and matrix spike duplicate (MSD) analyzed in this SDG?				

VALIDATION FINDINGS CHECKLIST

Validation Area	Yes	No	NA	Findings/Comments
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?				
IX. Laboratory control samples				
Was an LCS analyzed per extraction batch?	/	<u> </u>		
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?				
X. Field duplicates		<u> </u>		
Were field duplicate pairs identified in this SDG?			<u> </u>	
Were target compounds detected in the field duplicates?				
XI. Internal standards				
Were internal standard area counts within -50% to +100% of the associated calibration standard?				
Were retention times within <u>+</u> 30 seconds of the associated calibration standard?	$\bot\!$	1		
XII. Compound quantitation				
Did the laboratory LOQs/RLs meet the QAPP LOQs/RLs?		<u> </u>		
Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?				
Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?				
XIII. Target compound identification				
Were relative retention times (RRT's) within \pm 0.06 RRT units of the standard?	/	<u> </u>		
Did compound spectra meet specified EPA "Functional Guidelines" criteria?	\angle			
Were chromatogram peaks verified and accounted for?	$\bot\!$	<u> </u>		
XIV. System performance				
System performance was found to be acceptable.				
XV. Overall assessment of data		/		
Overall assessment of data was found to be acceptable.				

VALIDATION FINDINGS WORKSHEET

METHOD: GC/MS SVOA

				
A. Phenol	AA. 2-Chloronaphthalene	AAA. Butylbenzylphthalate	AAAA. Dibenzothiophene	A1.Dibenz(a,h)+(a,c)anthracene
B. Bis (2-chloroethyl) ether	BB. 2-Nitroaniline	BBB. 3,3'-Dichlorobenzidine	BBBB. Benzo(a)fluoranthene	B1.Benzo(j)fluoranthene
C. 2-Chlorophenol	CC. Dimethylphthalate	CCC. Benzo(a)anthracene	CCCC. Benzo(b)fluorene	C1.Benzo(b)naphtho(2,1-d)thiophene
D. 1,3-Dichlorobenzene	DD. Acenaphthylene	DDD. Chrysene	DDDD. cis/trans-Decalin	D1.
E. 1,4-Dichlorobenzene	EE. 2,6-Dinitrotoluene	EEE. Bis(2-ethylhexyl)phthalate	EEEE. Biphenyl	E1.
F. 1,2-Dichlorobenzene	FF. 3-Nitroaniline	FFF. Di-n-octylphthalate	FFFF. Retene	F1.
G. 2-Methylphenol	GG. Acenaphthene	GGG. Benzo(b)fluoranthene	GGGG. C30-Hopane	G1.
H. 2,2'-Oxybis(1-chloropropane)	HH. 2,4-Dinitrophenol	HHH. Benzo(k)fluoranthene	HHHH. 1-Methylphenanthrene	H1.
I. 4-Methylphenol	II. 4-Nitrophenol	III. Benzo(a)pyrene	IIII. 1,4-Dioxane	11.
J. N-Nitroso-di-n-propylamine	JJ. Dibenzofuran	JJJ. Indeno(1,2,3-cd)pyrene	JJJJ. Acetophenone	J1.
K. Hexachloroethane	KK. 2,4-Dinitrotoluene	KKK. Dibenz(a,h)anthracene	KKKK. Atrazine	K1.
L. Nitrobenzene	LL. Diethylphthalate	LLL. Benzo(g,h,i)perylene	LLLL. Benzaldehyde	L1.
M. Isophorone	MM. 4-Chlorophenyl-phenyl ether	MMM. Bis(2-Chloroisopropyl)ether	MMMM. Caprolactam	M1.
N. 2-Nitrophenol	NN. Fluorene	NNN. Aniline	NNNN. 2,6-Dichlorophenol	N1.
O. 2,4-Dimethylphenol	OO. 4-Nitroaniline	OOO. N-Nitrosodimethylamine	OOOO. 1,2-Diphenylhydrazine	01.
P. Bis(2-chloroethoxy)methane	PP. 4,6-Dinitro-2-methylphenol	PPP. Benzoic Acid	PPPP. 3-Methylphenol	P1.
Q. 2,4-Dichlorophenol	QQ. N-Nitrosodiphenylamine	QQQ. Benzyl alcohol	QQQQ. 3&4-Methylphenol	Q1.
R. 1,2,4-Trichlorobenzene	RR. 4-Bromophenyl-phenylether	RRR. Pyridine	RRRR. 4-Dimethyldibenzothiophene (4MDT)	R1.
S. Naphthalene	SS. Hexachlorobenzene	SSS. Benzidine	SSSS. 2/3-Dimethyldibenzothiophene (4MDT)	S1.
T. 4-Chloroaniline	TT. Pentachlorophenol	TTT. 1-Methylnaphthalene	TTTT. 1-Methyldibenzothiophene (1MDT)	T1.
U. Hexachlorobutadiene	UU. Phenanthrene	UUU.Benzo(b)thiophene	UUUU. 2,3,4,6-Tetrachlorophenol	U1.
V. 4-Chloro-3-methylphenol	VV. Anthracene	VVV.Benzonaphthothiophene	VVVV. 1,2,4,5-Tetrachlorobenzene	V1.
W. 2-Methylnaphthalene	WW. Carbazole	WWW.Benzo(e)pyrene	WWWW. Chrysene/Triphenylene	W1.
X. Hexachlorocyclopentadiene	XX. Di-n-butylphthalate	XXX. 2,6-Dimethylnaphthalene	XXXX.Benzo(j)+(k)fluoranthene	X1.
Y. 2,4,6-Trichlorophenol	YY. Fluoranthene	YYY. 2,3,5-Trimethylnaphthalene	YYYY. Naphthobenzophiophene	Y1.
Z. 2,4,5-Trichlorophenol	ZZ. Pyrene	ZZZ. Perylene	ZZZZ.Benzofluoranthenes, Total	Z1.

VALIDATION FINDINGS WORKSHEET Continuing Calibration

METHOD: GC/MS BNA (EPA SW 846 Method 8270D)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

N N/A Y(N)N/A Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?

N/A Were percent difference	s (%D)	≤20 % and relative res	sponse factors (RRF) within the method criteria?
-----------------------------	--------	------------------------	---------------------	-------------------------------

#	Date	Standard ID	Compound	Finding %D (Limit: <u><</u> 20.0%)	Finding RRF (Limit)	Associated Samples	Qualifications
	10/4/20	NT1020100604	111	29.2 23.7 37.2		## 1, 3, 8-9.MB	VW/A
	77	·	HK	23.7		(fets)	7 7
			111	37.2			
-							
ļ							
 							
						 	
 -							
						 	
<u> </u>							
<u> </u>							
<u></u>							

Blank extraction date:

VALIDATION FINDINGS WORKSHEET Blanks

Page:_	
Reviewer:_	9
2nd Reviewer:	

METHOD: GC/MS BNA (EPA SW 846 Method 8270D)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

(Y)N N/A Was a method blank analyzed for each matrix?

Was a method blank analyzed for each concentration preparation level?

Blank analysis date:

<u>Y N N/A</u> Was a method blank associated with every sample?

Was the blank contaminated? If yes, please see qualification below.

Blank extraction date: 10/2/20 Blank analysis date: 10/2/20

Conc. units: Associated Samples: 6-7

Compound	Blank ID	Sample Identification						
B 1	0046 B	16						
7222	11.7	115/1						
								_

Conc. units:		Associa	ted Samples:					
Compound	Blank ID	Sample Identification						
							-	

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT:

Common contaminants such as the phthalates and TICs noted above that were detected in samples within ten times the associated method blank concentration were qualified as not detected, "U". Other contaminants within five times the method blank concentration were also qualified as not detected, "U".

VALIDATION FINDINGS WORKSHEET Surrogate Recovery

Page:_	(of	
Reviewer:	4	

METHOD: GC/MS BNA (EPA SW 846 Method 8270D)

Please see qualification below for all questions answered "N". Not applicable questions are identified as "N/A".

YOY N/A

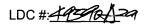
Were percent recoveries (%R) for surrogates within QC limits?

If 2 or more base neutral or acid surrogates were outside QC limits, was a reanalysis performed to confirm %R?

If any %R was less than 10 percent, was a reanalysis performed to confirm %R?

Y N(N/	A II an	y %R was less than 10 percent, wa	s a reanalysis performed	to confirm %R?	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#	Date	Sample ID	Surrogate	%R (Limits)	Qualifications
		3 (dets+ND)	NBZ	28. (30-1-0)	-VIA/P
			NBZ TPH	28. (30-1-0) 22.4 (37-1-20)	7 17
				()	
				()	
				()	
				()	
				()	
				()	
				()	
				()	
				()	
				()	
				()	
				()	
				()	
				()	
				()	
				()	
				()	
				()	
				()	
				()	
				()	
				()	
				()	
					<u> </u>

(NBZ) = Nitrobenzene-d5 (FBP) = 2-Fluorobiphenyl (TPH) = Terphenyl-d14


(PHL) = Phenol-d5

(2FP)= 2-Fluorophenol

(TBP) = 2,4,6-Tribromophenol

(2CP) = 2-Chlorophenol-d4

(DCB) = 1,2-Dichlorobenzene-d4

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates

Page:_	_/ of/_
Reviewer:	φ_

METHOD: GC/MS BNA (EPA SW 846 Method 8270D)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated

MS/MSD. Soil / Water.

Was a MS/MSD analyzed every 20 samples of each matrix?

Y/N N/A Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?

	MS/MSD ID	Compound	MS %R (Limits)	MSD %R (Limits)	RPD (Limits)	Associated Samples	Qualifications
	8/9	3		-42T 43-120)	()	1-2 (duts)	1/41/0
l		W	11.6 (1)	134 (1)	()	1 - (24)	7/4/2
$\parallel \rightarrow \parallel$		≥> 44		-(0.6 (45-120)	()		
		NN	-11.3 ()	-6.8- ()	()		
		VV	-54.3 (45-120)	-5 ² . ()	()		
		ecc	-49 49-120	-151 (49-1-20)	()		
		DDD	-180 UT-12U)	-194 (47-120)	()		
		Z22 ²	-76.1 (30-160)	-73.1 (30-160)	()		
			-76. (30-160) -178 (42-20)	-174 (42-120)	()		
		111	-TT. 142-123		()		
		kkk	61.9 30-133	()	()		Y
		444	-114 (38-126)	-117 (38-126)	()		1/41/A
		44.22	70/R out		()		NQ>4X
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
				()	()_		
			()	()	()		
		<u></u>	()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
-			()	()	()		
<u> </u>			()	()	()		
							<u> </u>

VALIDATION FINDINGS WORKSHEET Laboratory Control Samples (LCS)

METHOD: GC/MS BNA (EPA SW 846 Method 8270D)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Was a LCS required?

Were the LCS/LCSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?

#	Date	LCS/LCSD ID	Compound	LCS %R (Limits)	LCSD %R (Limits)	RPD (Limits)	Associated Samples	Qualifications
		BIJ0031-BS1	7	143 (42-123)	()	()	1-3. UB (dots)	Hets
			KKK	136 (30-133)	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()		()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	<u> </u>	<u> </u>	L

LDC #: 495901-0

VALIDATION FINDINGS WORKSHEET <u>Overall Assessment of Data</u>

Page:	of	_
Reviewer:	9	

METHOD: GC/MS SVOA (EPA SW 846 Method 8270C)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

All available information pertaining to the data were reviewed using professional judgement to compliment the determination of the overall quality of the data.

Was the overall quality and usability of the data acceptable?

#	Date	Sample ID	Compound	Finding	Qualifications
			Compound UU, YY. 22 > ealth All except UU. YY. 22	iange	JR/A
			K. Accord 1111 W 22		/
		2	All sixcept uu, //. 22		V

Comments:		
COMMENIA.		
••••••••		

LDC #: 49590A2a

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Reviewer: PG

METHOD: GC/MS SVOC (EPA SW 846 Method 8270D)

The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations:

 $RRF = (A_x)(C_{is})/(A_{is})(C_x)$ average RRF = sum of the RRFs/number of standards

 $\begin{array}{ll} A_x = \text{Area of compound,} & A_{is} = \text{Area of associated internal standard} \\ C_x = \text{Concentration of compound,} & C_{is} = \text{Concentration of internal standard} \\ S = \text{Standard deviation of the RRFs,} & X = \text{Mean of the RRFs} \end{array}$

%RSD = 100 * (S/X)

#	Standard ID	Calibration Date	Compound (Reference Internal Standard)	Reported RRF (5 std)	Recalculated RRF (5 std)	Reported Average RRF (initial)	Recalculated Average RRF (initial)	Reported %RSD	Recalculated %RSD
1	ICAL	9/19/20	Phenol (1st internal standard)	2.007806	2.007806	2.021015	2.021015	7.6	7.6
			Naphthalene (2nd internal standard)	1.056825	1.056825	1.037038	1.037038	2.8	2.8
			Fluorene (3rd internal standard)	1.64294	1.64294	1.625994	1.625994	8.2	8.2
			Phenanthrene (4th internal standard)	1.091517	1.091517	1.054805	1.054805	2.6	2.6
			Chrysene (4th internal standard)	1.2920762	1.292076	1.24404	1.24404	2.7	2.7
			Bis(2-ethylhexyl)phthalate (5th internal standard)	0.5831874	0.5831874	0.565477	0.565477	4.6	4.6
			Benzo(g.h.i) perylene (6th internal standard)	0.8346341	0.834634	0.8571136	0.8571136	5.1	5.1
	ICAL	10/13/20	Naphthalene (2nd internal standard)						
			Fluorene (3rd internal standard)						
			Phenanthrene (4th internal standard)						!
			Butylbenzylphthalate (5th internal standard)	0.5846178	0.5846178	0.5956702	0.5956702	7.8	7.8
			Renzo(a)pyrene (6th internal standard)						
3			Phenol (1st internal standard)						į į
			Naphthalene (2nd internal standard)						
			Fluorene (3rd internal standard)						
			Phenanthrene (4th internal standard)						
			Bis(2-ethylhexyl)phthalate (5th internal standard)						
			Benzo(a)pyrene (6th internal standard)						

Comments: Refer to Initial Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated
results.

LDC #: 49590A2a

VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification

Page: 1 of 1 Reviewer: PG

METHOD: GC/MS SVOCs (EPA SW 846 Method 8270D)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF

Where: ave. RRF = initial calibration average RRF

 $RRF = (A_x)(C_{is})/(A_{is})(C_x)$

RRF = continuing calibration RRF

 A_x = Area of compound,

A_{is} = Area of associated internal standard

 $C_x =$ Concentration of compound,

C_{is} = Concentration of internal standard

					Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compound (Reference Internal Standard)	Average RRF (initial)	RRF (CC)	RRF (CC)	%D	%D
1	NT1020100604	10/6/20	Phenol (1st internal standard)					
			Naphthalene (2nd internal standard)	1.037038	1.0535790	1.0535790	1.6	1.6
			Fluorene (3rd internal standard)	1.625994	1.6146230	1.6146230	0.7	0.7
			Phenanthrene (4th internal standard)	1.054805	1.0672160	1.0672160	1.2	1.2
			Chrysene (4th internal standard)	1.24404	1.2519030	1.2519030	0.6	0.6
			Benzo(g,h,i)perylene (6th internal standard)	0.8571136	1.1721560	1.1721556	37.2	36.8
2	NT1020100802	10/8/20	Phenol (1st internal standard)	2.021015	2.0574620	2.0574620	1.8	1.8
			Naphthalene (2nd internal standard)	1.037038	1.0567110	1.0567106	1.9	1.9
			Fluorene (3rd internal standard)	1.625994	1.5559960	1.5559960	4.3	4.3
			Phenanthrene (4th internal standard)	1.054805	1.0484750	1.0484746	0.6	0.6
			Chrysene (4th internal standard)	1.24404	1.2458130	1.2458129	0.1	0.1
			Bis(2-ethylhexyl)phthalate (5th internal standard)	0.565477	0.5325410	0.5325410	5.8	5.8
			Benzo(g,h,i) perylene (6th internal standard)	0.8571136	0.8916706	0.8916705	4.3	4.0
	NT1020101314	10/13/20	2,4-Dimethylphenol(2nd internal standard)					
			Fluorene (3rd internal standard)					
			Anthracene (4th internal standard)					
			Butylbenzylphthalate (5th internal standard)	0.5956702	0.5787982	0.5787982	2.8	2.8
			Benzo(g,h,i)perylene (6th internal standard)					

Comments: Refer to Continuing Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

LDC #: 19590129

VALIDATION FINDINGS WORKSHEET Surrogate Results Verification

Page:	_(of
Reviewer:_	4

METHOD: GC/MS Semivolatiles (EPA SW 846 Method 8270D)

The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the following calculation:

% Recovery: SF/SS * 100

Where: SF = Surrogate Found

SS = Surrogate Spiked

Sample ID:

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Nitrobenzene-d5	5.0	3.32192	66.4	66.4	
2-Fluorobiphenyl	1	3.36334	6T.3	67.3	
Terphenyl-d14	<i>V</i>	3.21097	64.2	64.2	
Phenol-d5	7.5	2.71048	36.1	36.	
2-Fluorophenol	1	251477	36.2	36.2	
2,4,6-Tribromophenol	1/	4.48426	59.8	59.8	
2-Chlorophenol-d4	V	3.60099	480	48.0	
1,2-Dichlorobenzene-d4	5.0	3.26771	65.4	65.4	

Sample ID:

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Nitrobenzene-d5					
2-Fluorobiphenyl					
Terphenyl-d14					
Phenol-d5					
2-Fluorophenol					
2,4,6-Tribromophenol					
2-Chlorophenol-d4					
1,2-Dichlorobenzene-d4					

Sample ID:

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Nitrobenzene-d5					
2-Fluorobiphenyl					
Terphenyl-d14					
Phenol-d5					
2-Fluorophenol					
2,4,6-Tribromophenol					
2-Chlorophenol-d4					
1,2-Dichlorobenzene-d4					

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates Results Verification

METHOD: GC/MS SVOA (EPA SW 846 Method 82702)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the matrix spike and matrix spike duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * (SSC - SC)/SA

Where: SSC = Spiked sample concentration SA = Spike added

SC = Sample concentation

RPD = I MSC - MSC I * 2/(MSC + MSDC)

MSC = Matrix spike concentration

MSDC = Matrix spike duplicate concentration

MS/MSD samples: 12/13

Compound	Sp Ad	ike ded	Sample Concentration (HJS)	Conce	Sample otration		Spike Recovery	Matrix Spike		MS/M RPI	
	MS	MSD		MS_	MSD	Reported	Recalc	Reported	Recalc	Reported	Recalculated
Phenol	500	500	ND	322	279	64.3	64	55.9	55.8	H.	14.3
N-Nitroso-di-n-propylamine											
4-Chloro-3-methylphenol						ļ					
Acenaphthene	I V	<u> </u>	ND	425	425	85.	85.0	85./	85.0	0.0	0
Pentachlorophenol	ļ	,	1.	\	 		2				
Pyrene		₩	9.4	436	464	85. ³	85.	91.0	90.9	6.39	6.22
				<u> </u>	<u> </u>		<u> </u>				
						ļ					
	1				 	 					

Comments: Ref	<u>fer to Matrix Spike/Matrix Sp</u>	<u>oike Duplicates findings worl</u>	<u>ksheet for list of qualificati</u>	<u>ons and associated samp</u>	oles when reported results d	o not agree within 10.0%
of the recalcular	ted results.					

VALIDATION FINDINGS WORKSHEET Laboratory Control Sample/Laboratory Control Sample Duplicates Results Verification

Page:_	<u>)</u> of_	1
Reviewer:		

METHOD: GC/MS Semivolatiles (EPA SW 846 Method 8270D)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * (SC/SA)

Where: SSC = Spike concentration

SA = Spike added

RPD = I LCSC - LCSDC I * 2/(LCSC + LCSDC)

LCS/LCSD samples: BIJOS (-BS)

Compound	Sp Ad (M	oike ded	Conce	oike Intration		CS Recovery		SD Recovery		LCSD PD
	LCS	LCSD	LCS	LCSD	Reported	Recalc	Reported	Recalc	Reported	Recalculated
Phenol										
N-Nitroso-di-n-propylamine										
4-Chloro-3-methylphenol										
Acenaphthene	500	NÀ	442	NX	88.3	88.4				
Pentachlorophenol										
Pyrene	500		494		989	98.8				

Comments: Refer to Laboratory Control Sample/Laboratory	Control Sample Duplicates	findings worksheet for list of	f qualifications and associate	ed samples when reported
results do not agree within 10.0% of the recalculated results				

VALIDATION FINDINGS WORKSHEET <u>Sample Calculation Verification</u>

Page:_	
Reviewer:_	9

METHOD: GC/MS BNA (EPA SW 846 Method 8270D)

N	N	N/A
Y	W	N/A

Were all reported results recalculated and verified for all level IV samples?

Were all recalculated results for detected target compounds agree within 10.0% of the reported results?

Conce	ntratio	$ n = \frac{(A_{x})(I_{s})(V_{s})(DF)(2.0)}{(A_{is})(RRF)(V_{o})(V_{s})(%S)} $	Example:
A_{x}	=	Area of the characteristic ion (EICP) for the compound to be measured	Sample I.D
A_{is}	=	Area of the characteristic ion (EICP) for the specific internal standard	1-1/100
l _s	=	Amount of internal standard added in nanograms (ng)	Conc. = (4/3544)(4,00)(/000)(/) (26802)(/037038)(25,99)(0.3847)(
V_{o}	=	Volume or weight of sample extract in milliliters (ml) or grams (g).	7
V_{l}	=	Volume of extract injected in microliters (ul)	=643.1 HAKE
V_{t}	=	Volume of the concentrated extract in microliters (ul)	1. 1. 1.
Df	=	Dilution Factor.	
%S	=	Percent solids, applicable to soil and solid matrices	

2.0	= Factor of 2 to account	nt for GPC cleanup			
#	Sample ID	Compound	Reported Concentration	Calculated Concentration ()	Qualification
		5	6/2		
			- 043		
<u></u>	,				
I					
}					
<u> </u>					
 					
 					
1					
ļ					
					
 					
IL	L	L		<u> </u>	1

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Duwamish AOC4

LDC Report Date:

November 16, 2020

Parameters:

Semivolatiles

Validation Level:

Stage 4

Laboratory:

Analytical Resources, Inc.

Sample Delivery Group (SDG): 2010181

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
LDW20-SS410	2010181-05	Sediment	06/30/20
LDW20-SS412	2010181-07	Sediment	06/30/20
LDW20-SS229	2010181-13	Sediment	06/30/20
LDW20-SS227	2010181-14	Sediment	06/30/20
LDW20-SS410MS	2010181-05MS	Sediment	06/30/20
LDW20-SS410MSD	2010181-05MSD	Sediment	06/30/20
LDW20-SS229MS	2010181-13MS	Sediment	06/30/20
LDW20-SS229MSD	2010181-13MSD	Sediment	06/30/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Lower Duwamish Waterway Quality Assurance Project Plan for Remedial Design of Upper Reach: Pre-Design Investigation (May 2020) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Semivolatile Organic Compounds (SVOCs) by Environmental Protection Agency (EPA) SW 846 Method 8270E in Selected Ion Monitoring (SIM) mode

All sample results were subjected to Stage 4 data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

A decafluorotriphenylphosphine (DFTPP) tune was performed at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

For compounds where average relative response factors (RRFs) were utilized, percent relative standard deviations (%RSD) were less than or equal to 20.0%.

In the case where the laboratory used a calibration curve to evaluate the compounds, all coefficients of determination (r²) were greater than or equal to 0.990.

Average relative response factors (RRF) for all compounds were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 30.0% for all compounds.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all compounds with the following exceptions:

Date	Compound	%D	Associated Samples	Flag	A or P
10/08/20 (NT10201008035)	Benzoic acid	28.9	All samples in SDG 20l0181	J (all detects)	Α
10/08/20 (NT10201008035)	Pentachlorophenol	48.0	LDW20-SS229 LDW20-SS227	UJ (all non-detects)	А

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Compound Quantitation

All compound quantitations were within validation criteria.

XIII. Target Compound Identifications

All target compound identifications were within validation criteria.

XIV. System Performance

The system performance was acceptable.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Due to continuing calibration %D, data were qualified as estimated in four samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable.

Duwamish AOC4 Semivolatiles – Data Qualification Summary - SDG 2010181

Sample	Compound	Flag	A or P	Reason
LDW20-SS410 LDW20-SS412 LDW20-SS229 LDW20-SS227	Benzoic acid	J (all detects)	А	Continuing calibration (%D)
LDW20-SS229 LDW20-SS227	Pentachlorophenol	UJ (all non-detects)	Α	Continuing calibration (%D)

Duwamish AOC4

Semivolatiles - Laboratory Blank Data Qualification Summary - SDG 2010181

No Sample Data Qualified in this SDG

Duwamish AOC4

Semivolatiles - Field Blank Data Qualification Summary - SDG 2010181

No Sample Data Qualified in this SDG

SDG # Labora	:49590A2bVALIDATIO t:20I0181atory:_Analytical Resources, Inc. OD: GC/MS Polynuclear Aromatic Hydro	5	Stage 4	ESS WORKSHEE		Date: ////////////////////////////////////
	amples listed below were reviewed for ea ion findings worksheets.	ich of the fo	ollowing v	alidation areas. Valida	tion findings are	noted in attached
	Validation Area			Com	ments	
1.	Sample receipt/Technical holding times	A		·		
11.	GC/MS Instrument performance check	A				
111.	Initial calibration/ICV	AA	RSI	= 20/0 /2	4 < 3 J	70
IV.	Continuing calibration	W	ec/	= 20/0		
V.	Laboratory Blanks	A				
VI.	Field blanks	\ <u>\</u>				
VII.	Surrogate spikes	A				
VIII.	Matrix spike/Matrix spike duplicates	A				
IX.	Laboratory control samples	A_{\perp}	100	ê		
Χ.	Field duplicates	N				
XI.	Internal standards	A				
XII.	Compound quantitation RL/LOQ/LODs	A				
XIII.	Target compound identification	A				
XIV.	System performance	A				
XV.	Overall assessment of data	\triangle				
lote:	N = Not provided/applicable R = Rir	No compounds nsate iield blank	s detected	D = Duplicate TB = Trip blank EB = Equipment bl	OTHER	rce blank
	Client ID			Lab ID	Matrix	Date
1/1	_DW20-SS410			2010181-05	Sediment	06/30/20
2 1 L	_DW20-SS412		, <u>,</u> ,	2010181-07	Sediment	06/30/20
<u>ء کا ر</u>	_DW20-SS229			2010181-13	Sediment	06/30/20
42 1	_DW20-SS227			2010181-14	Sediment	06/30/20
5 L	_DW20-SS410MS			20I0181-05MS	Sediment	06/30/20
6 L	_DW20-SS410MSD			20I0181-05MSD	Sediment	06/30/20
7 2 L	DW20-SS229MS			2010181-13MS	Sediment	06/30/20
87 L	_DW20-SS229MSD			20I0181-13MSD	Sediment	06/30/20
ا و						
lotes:						
7	7 0034					
\mathcal{Z}	¥50046					

VALIDATION FINDINGS CHECKLIST

Page:__/of≥ Reviewer:__Q___

Method: PAH (EPA SW 846 Method 8270D-SIM)

Wethod: PAH (EPA SW 846 Method 6270D-SIM)								
Validation Area	Yes	No	NA	Findings/Comments				
I. Technical holding times								
Were all technical holding times met?	/							
Was cooler temperature criteria met?								
II. GC/MS Instrument performance check (Not required)								
Were the DFTPP performance results reviewed and found to be within the specified criteria?								
Were all samples analyzed within the 12 hour clock criteria?								
Illa. Initial calibration								
Did the laboratory perform a 5 point calibration prior to sample analysis?								
Were all percent relative standard deviations (%RSD) ≤ 20% and relative response factors (RRF) ≥ 0.05?		-						
Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit acceptance criteria of \geq 0.990?								
IIIb. Initial Calibration Verification								
Was an initial calibration verification standard analyzed after each initial calibration for each instrument?								
Were all percent differences (%D) ≤30%?	<i>'</i>							
IV. Continuing calibration								
Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?								
Were all percent differences (%D) \leq 20% and relative response factors (RRF) \geq 0.05?								
V. Laboratory Blanks								
Was a laboratory blank associated with every sample in this SDG?								
Was a laboratory blank analyzed for each matrix and concentration?		-						
Was there contamination in the laboratory blanks?								
VI. Field blanks								
Were field blanks identified in this SDG?								
Were target compounds detected in the field blanks?								
VII. Surrogate spikes	<u> </u>							
Were all surrogate percent differences (%R) within QC limits?								
If 2 or more base neutral or acid surrogates were outside QC limits, was a reanalysis performed to confirm %R?								
If any percent recoveries (%R) was less than 10 percent, was a reanalysis performed to confirm %R?								
VIII. Matrix spike/Matrix spike duplicates			<u>.</u>					
Were matrix spike (MS) and matrix spike duplicate (MSD) analyzed in this SDG?								
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?								

VALIDATION FINDINGS CHECKLIST

Page: →of → Reviewer: →

Validation Area	Yes	No	NA	Findings/Comments				
IX. Laboratory control samples								
Was an LCS analyzed per extraction batch?	/							
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?	/	<u></u>						
X. Field duplicates								
Were field duplicate pairs identified in this SDG?								
Were target compounds detected in the field duplicates?				<u> </u>				
XI. Internal standards	.							
Were internal standard area counts within -50% or +100% of the associated calibration standard?								
Were retention times within ± 30 seconds of the associated calibration standard?								
XII. Compound quantitation								
Did the laboratory LOQs/RLs meet the QAPP LOQs/RLs?								
Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?		-						
Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?								
XIII. Target compound identification								
Were relative retention times (RRT's) within ± 0.06 RRT units of the standard?								
Did compound spectra meet specified EPA "Functional Guidelines" criteria?								
Were chromatogram peaks verified and accounted for?								
XIV. System performance								
System performance was found to be acceptable.	/							
XV. Overall assessment of data								
Overall assessment of data was found to be acceptable.								

VALIDATION FINDINGS WORKSHEET

METHOD: GC/MS SVOA

A. Phenol	AA. 2-Chloronaphthalene	AAA. Butylbenzylphthalate	AAAA. Dibenzothiophene	A1. N-Nitrosodiethylamine
B. Bis (2-chloroethyl) ether	BB. 2-Nitroaniline	BBB. 3,3'-Dichlorobenzidine	BBBB. Benzo(a)fluoranthene	B1. N-Nitrosodi-n-butylamine
C. 2-Chlorophenol	CC. Dimethylphthalate	CCC. Benzo(a)anthracene	CCCC. Benzo(b)fluorene	C1. N-Nitrosomethylethylamine
D. 1,3-Dichlorobenzene	DD. Acenaphthylene	DDD. Chrysene	DDDD. cis/trans-Decalin	D1. N-Nitrosomorpholine
E. 1,4-Dichlorobenzene	EE. 2,6-Dinitrotoluene	EEE. Bis(2-ethylhexyl)phthalate	EEEE. Biphenyl	E1. N-Nitrosopyrrolidine
F. 1,2-Dichlorobenzene	FF. 3-Nitroaniline	FFF. Di-n-octylphthalate	FFFF. Retene	F1. Phenacetin
G. 2-Methylphenol	GG. Acenaphthene	GGG. Benzo(b)fluoranthene	GGGG. C30-Hopane	G1. 2-Acetylaminofluorene
H. 2,2'-Oxybis(1-chloropropane)	HH. 2,4-Dinitrophenol	HHH. Benzo(k)fluoranthene	HHHH. 1-Methylphenanthrene	H1. Pronamide
I. 4-Methylphenol	II. 4-Nitrophenol	III. Benzo(a)pyrene	IIII. 1,4-Dioxane	I1. Methyl methanesulfonate
J. N-Nitroso-di-n-propylamine	JJ. Dibenzofuran	JJJ. Indeno(1,2,3-cd)pyrene	JJJJ. Acetophenone	J1. Ethyl methanesulfonate
K. Hexachloroethane	KK. 2,4-Dinitrotoluene	KKK. Dibenz(a,h)anthracene	KKKK. Atrazine	K1. o,o',o''-Triethylphosphorothioate
L. Nitrobenzene	LL. Diethylphthalate	LLL. Benzo(g,h,i)perylene	LLLL. Benzaldehyde	L1. n-Phenylene diamine
M. Isophorone	MM. 4-Chlorophenyl-phenyl ether	MMM. Bis(2-Chloroisopropyl)ether	MMMM. Caprolactam	M1. 1,4-Naphthoquinone
N. 2-Nitrophenol	NN. Fluorene	NNN. Aniline	NNNN. 2,6-Dichlorophenol	N1. N-Nitro-o-toluidine
O. 2,4-Dimethylphenol	OO. 4-Nitroaniline	OOO. N-Nitrosodimethylamine	OOOO. 1,2-Diphenylhydrazine	O1. 1,3,5-Trinitrobenzene
P. Bis(2-chloroethoxy)methane	PP. 4,6-Dinitro-2-methylphenol	PPP. Benzoic Acid	PPPP. 3-Methylphenol	P1. Pentachlorobenzene
Q. 2,4-Dichlorophenol	QQ. N-Nitrosodiphenylamine	QQQ. Benzyl alcohol	QQQQ. 3&4-Methylphenol	Q1. 4-Aminobiphenyl
R. 1,2,4-Trichlorobenzene	RR. 4-Bromophenyl-phenylether	RRR. Pyridine	RRRR. 4-Dimethyldibenzothiophene (4MDT)	R1. 2-Naphthylamine
S. Naphthalene	SS. Hexachlorobenzene	SSS. Benzidine	SSSS. 2/3-Dimethyldibenzothiophene (4MDT)	S1. Triphenylene
T. 4-Chloroaniline	TT. Pentachlorophenol	TTT. 1-Methylnaphthalene	TTTT. 1-Methyldibenzothiophene (1MDT)	T1. Octachlorostyrene
U. Hexachlorobutadiene	UU. Phenanthrene	UUU.Benzo(b)thiophene	UUUU 2,3,4,6-Tetrachlorophenol	U1. Famphur
V. 4-Chloro-3-methylphenol	VV. Anthracene	VVV.Benzonaphthothiophene	VVVV. 1,2,4,5-Tetrachlorobenzene	V1. 1,4-phenylenediamine
W. 2-Methylnaphthalene	WW. Carbazole	WWW.Benzo(e)pyrene	WWWW 2-Picoline	W1. Methapyrilene
X. Hexachlorocyclopentadiene	XX. Di-n-butylphthalate	XXX. 2,6-Dimethylnaphthalene	XXXX. 3-Methylcholanthrene	X1. Pentachioroethane
Y. 2,4,6-Trichlorophenol	YY. Fluoranthene	YYY. 2,3,5-Trimethylnaphthalene	YYYY. a,a-Dimethylphenethylamine	Y1. 3,3'-Dimethylbenzidine
Z. 2,4,5-Trichlorophenol	ZZ. Pyrene	ZZZ. Perylene	ZZZZ. Hexachloropropene	Z1. o-Toluidine

VALIDATION FINDINGS WORKSHEET Continuing Calibration

Page:_	<u>_</u> _of	\angle
Reviewer:_	9	
and Reviewer		

METHOD: GC/MS BNA (EPA SW 846 Method 8270D)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Y (N N/A Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?

Were percent differences (%D) ≤20 % and relative response factors (RRF) within the method criteria?

#	Date	Standard ID	Compound	Finding %D (Limit: <20.0%)	Finding RRF (Limit)	Associated Samples	Qualifications
	10/2/20	NT1020 100 803	**************************************	28.9 48.0		\$11 (dets) 3-4.78 UB (NO)	XXX
	/ /		T	48.0		34.78 UB (NO)	- N
	ı						
	<u> </u>						
<u> </u>							

LDC #: 49590A2b

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page:	1	_of_	1
Reviewer:	F	PG	

METHOD: GC/MS SVOC (EPA SW 846 Method 8270D)

The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations:

 $RRF = (A_x)(C_{is})/(A_{is})(C_x)$ average RRF = sum of the RRFs/number of standards

 A_x = Area of compound, A_{is} = Area of associated internal standard C_x = Concentration of compound, C_{is} = Concentration of internal standard C_{is} = Concentration of internal standard C_{is} = Mean of the RRFs

%RSD = 100 * (S/X)

#	Standard ID	Calibration Date	Compound (Reference Internal Standard)	Reported RRF (1 std)	Recalculated RRF (1 std)	Reported Average RRF (initial)	Recalculated Average RRF (initial)	Reported %RSD	Recalculated %RSD
1	ICAL	9/19/20	1,4-Dichlorobenzene (1st internal standard)	1.494658	1.494658	1.492262	1.492262	3.2	3.2
	10,12	67 10720	1,2,4-Trichlorobenzene (2nd internal standard)	0.3760281	0.376028	0.3735282	0.3735282	8.1	8.1
			N-Nitrosodiphenylamine (3rd internal standard)	0.5658487	0.565848	0.5488937	0.5488937	8.2	8.2
			(4th internal standard)						
			(5th internal standard)						
			(6th internal standard)						
2			Phenol (1st internal standard)						
			Naphthalene (2nd internal standard)						
			Fluorene (3rd internal standard)						
			Phenanthrene (4th internal standard)						
			Bis(2-ethylhexyl)phthalate (5th internal standard)						
			Benzo(a)pyrene (6th internal standard)						
3			Phenol (1st internal standard)						
			Naphthalene (2nd internal standard)						
			Fluorene (3rd internal standard)						
			Phenanthrene (4th internal standard)						
			Bis(2-ethylhexyl)phthalate (5th internal standard)						
			Benzo(a)pyrene (6th internal standard)						

Comments: Refer to Initial Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculate
results.

Validation Findings Worksheet Initial Calibration Calculation Verification

Page:__/_of____

Method: GC/MS SVOCs

				(Y)	(X)	(X^2)
Date	Instrument	Compound	Level	Response	Conc.	Conc.
9/19/2020	NT10	Benzoic acid	1	0.025981668	0.040	0.20
			2	0.08441409	0.080	0.50
			3	0.200064642	0.200	1.00
			4	0.554953679	0.600	2.50
			5	1.287723759	1.000	5.00
			6	2.456586038	8.000	10.00

Regression Output			Reported
Constant	c =	0.0000	0
Std Err of Y Est			
R Squared		0.9986483	0.9974
Degrees of Freedom			
	B =	A =	B=
X Coefficient(s)	-4.79584E-03	2.4940E-01	4.09527
Std Err of Coef.			A=
			-0.01884
Correlation Coefficient		0.999324	
Coefficient of Determination (r^2)	r^ 2	0.998648	1

LDC #: 49282A2a

 $RRF = (A_x)(C_{is})/(A_{is})(C_x)$

VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification

Page:_	1	_of_	1	_
Reviewe	••	PC	2	

METHOD: GC/MS SVOCs (EPA SW 846 Method 8270D)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF

Where: ave. RRF = initial calibration average RRF

RRF = continuing calibration RRF

 $A_x =$ Area of compound,

A_{is} = Area of associated internal standard

 C_{x} = Concentration of compound,

C_{is} = Concentration of internal standard

					Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compound (Reference Internal Standard)	Average RRF (initial)	RRF (CC)	RRF (CC)	%D	%D
1	HSL0904	9/4/20	1,4-Dichlorobenzene (1st internal standard)	1.492262	1.5199060	1.519906	1.9	1.9
			1,2,4-Trichlorobenzene (2nd internal standard)	0.3735282	0.3838269	0.3838268	2.8	2.8
			N-Nitrosodiphenylamine (3rd internal standard)	0.5488937	0.5664933	0.5664932	3.2	3.2
			(4th internal standard)					
			(5th internal standard)					
			(6th internal standard)					
2			(1st internal standard)					
			(2nd internal standard)					
			e (3rd internal standard)					
			(4th internal standard)					
			(5th internal standard)					
			(6th internal standard)					
3			(1st internal standard)					
			(2nd internal standard)					
			e (3rd internal standard)					
			(4th internal standard)					
			(5th internal standard)					
			(6th internal standard)					

Comments: Refer to Continuing Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

VALIDATION FINDINGS WORKSHEET Surrogate Results Verification

Page: /of/ Reviewer: 4

METHOD: GC/MS Semivolatiles (EPA SW 846 Method 8270D-SIM)

The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the following calculation:

% Recovery: SF/SS * 100

Where: SF = Surrogate Found

SS = Surrogate Spiked

Sample ID: 🗢

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Nitrobenzene-d5					
2-Fluorobiphenyl					
Terphenyl-d14	5.0	4.03791	·80.8	80.8	
Phenol-d5					
2-Fluorophenol	7.5	2.66417	35.5	35.5	
2,4,6-Tribromophenol					
2-Chlorophenol-d4					
1,2-Dichlorobenzene-d4					

Sample ID:

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Nitrobenzene-d5					
2-Fluorobiphenyl					
Terphenyl-d14					
Phenol-d5					
2-Fluorophenol					
2,4,6-Tribromophenol					
2-Chlorophenol-d4					
1,2-Dichlorobenzene-d4					

Sample ID:

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Nitrobenzene-d5					
2-Fluorobiphenyl					
Terphenyl-d14					
Phenol-d5					
2-Fluorophenol					
2,4,6-Tribromophenol					
2-Chlorophenol-d4					
1,2-Dichlorobenzene-d4					

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates Results Verification

Page:_	[of]
Reviewer:	4

METHOD: GC/MS PAHs (EPA SW 846 Method 8270D-SIM)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the matrix spike and matrix spike duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * (SSC - SC)/SA

Where: SSC = Spiked sample concentration

SA = Spike added

SC = Sample concentation

RPD = I MSC - MSC I * 2/(MSC + MSDC)

MSC = Matrix spike concentration

MSDC = Matrix spike duplicate concentration

MS/MSD samples: 7/8

Compound	Spike Added Compound (16 125)		Sample Concentration	Spiked Sample Concentration		Matrix Spike Percent Recovery		Matrix Spike Duplicate Percent Recovery		MS/MSD RPD	
	MS	MSD		MS	MSD	Reported	Recalc	Reported	Recalc	Reported	Recalculated
Acenaphthene											
Pyrene			·								
5	500	500	ND	588	58	118	118	116	115	1.29	1.20
1	1300	1300	V	911	969	70.1	70.1	746	74.6	6.19	6.17
				,	· ·					,	

Comments: <u>Refer to Matrix Spike/N</u>	<u> Matrix Spike Duplicates findings wor</u>	<u>rksheet for list of qualifications a</u>	<u>and associated samples when re</u>	<u>ported results do not agree within 10.0</u>	%
of the recalculated results.					_
					_

VALIDATION FINDINGS WORKSHEET Laboratory Control Sample/Laboratory Control Sample Duplicates Results Verification

Page:_	[of]
Reviewer:	9

METHOD: GC/MS PAHs (EPA SW 846 Method 8270D-SIM)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * (SC/SA)

Where: SSC = Spike concentration

SA = Spike added

RPD = I LCSC - LCSDC I * 2/(LCSC + LCSDC)

LCSC = Laboratory control sample concentration LCSDC = Laboratory control sample duplicate concentration

LCS/LCSD samples: BTJ0046-BS2

Compound	S _F	oike sled (5)	Sp Conce	nike ntration 7 154	LCS Percent Recovery		L CSD Percent Recovery		L CS/I CSD RPD	
	LCS	LCSD	LCS	LCSD	Reported	Recalc	Reported	Recalc	Reported	Recalculated
Acenaphthene										
Pyrene										
ナ	400	NA	601	NA	120	120				
IT	1300		a52	1	73.3	73.2				

Comments: Refer to Laboratory Control Sample/Laboratory Control Sample Duplicates findings worksheet for list of qualifications and associated samples when re	eported
esults do not agree within 10.0% of the recalculated results.	

LDC # LOCAL

%S

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page:	<u>/</u> of /
Reviewer:_	9-

METHOD: GC/MS PAHs (EPA SW 846 Method 8270D-SIM)

Percent solids, applicable to soil and solid matrices

W N	N/A N/A	Were all reported results recalculated and Were all recalculated results for detected to	verified for all level IV samples? target compounds agree within 10.0% of the reported results?
Cor	ncentratio	$n = \frac{(A_{s})(I_{s})(V_{t})(DF)(2.0)}{(A_{ls})(RRF)(V_{o})(V_{t})(\%S)}$	Example:
A_{x}	=	Area of the characteristic ion (EICP) for the compound to be measured	Sample I.D.
A_{is}	=	Area of the characteristic ion (EICP) for the specific internal standard	1/24739 LANGE TI (100/88) (2739) (1) (2)
Is	=	Amount of internal standard added in nanograms (ng)	Conc. = (38816) [4. (1905) [1. (00) (1905) [1. (1905) (1905) [1. (1905) (1905) (1905) [1. (1905) (1905) (1905) [1. (1905) (1905) (1905) [1. (1905) (1905) (1905) [1. (1905) (1905) (1905) [1. (1905) (1905) (1905) [1. (1905) (1905) (1905) [1. (1905) (1905) [1. (1905) (1905) [1. (1905) (1905) [1. (1905) (1905) [1. (1905) (1905) [1. (1905) (1905) [1. (1905) (1905) [1. (1905) (1905) [1. (1905) (1905) [1. (1905) (1905) [1. (1905) (1905) [1. (1905) [1. (1905) (1905) [1. (1905) (1905) [1. (1905) (1905) [1. (1905) [1. (1905) (1905) [1. (1905)
V _o	=	Volume or weight of sample extract in milliliters (ml) or grams (g).	(5.4)
V_{i}	=	Volume of extract injected in microliters (ul)	= 104.4 M/K
V_t	=	Volume of the concentrated extract in microliters (ul)	
Df	=	Dilution Factor.	

2.0	= Factor of 2 to accou	ınt for GPC cleanup			
#	Sample ID	Compound	Reported Concentration	Calculated Concentration ()	Qualification
		PPP	104		
 		171	104		
ļ	<u>'</u>				
L					
 					
 					
					
				 	
 					
 					
 					
-					
L					

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Duwamish AOC4

LDC Report Date:

November 11, 2020

Parameters:

Hexachlorobenzene

Validation Level:

Stage 4

Laboratory:

Analytical Resources, Inc.

Sample Delivery Group (SDG): 2010181

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
LDW20-SS229	2010181-13	Sediment	06/30/20
LDW20-SS227	2010181-14	Sediment	06/30/20
LDW20-SS229MS	20I0181-13MS	Sediment	06/30/20
LDW20-SS229MSD	20I0181-13MSD	Sediment	06/30/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Lower Duwamish Waterway Quality Assurance Project Plan for Remedial Design of Upper Reach: Pre-Design Investigation (May 2020) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Hexachlorobenzene by Environmental Protection Agency (EPA) SW 846 Method 8081B

All sample results were subjected to Stage 4 data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC Instrument Performance Check

Instrument performance was checked at 12 hour intervals.

The individual 4,4'-DDT and Endrin breakdowns (%BD) were less than or equal to 15.0%.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0%.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0%.

IV. Continuing Calibration

Continuing calibration was performed at required frequencies.

The percent differences (%D) were less than or equal to 20.0%.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates/Internal Standards

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

All internal standard areas and retention times were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Compound Quantitation

All compound quantitations met validation criteria.

XII. Target Compound Identification

All target compound identifications met validation criteria.

XIII. System Performance

The system performance was acceptable.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

The quality control criteria reviewed were met and are considered acceptable.

Duwamish AOC4 Hexachlorobenzene - Data Qualification Summary - SDG 2010181

No Sample Data Qualified in this SDG

Duwamish AOC4 Hexachlorobenzene - Laboratory Blank Data Qualification Summary - SDG 2010181

No Sample Data Qualified in this SDG

Duwamish AOC4 Hexachlorobenzene - Field Blank Data Qualification Summary - SDG 2010181

No Sample Data Qualified in this SDG

)G#	:VALIDATIO t:t:		LETENESS Stage 4	S WORKSHEET	R	Date: //// Page: / of Reviewer: // Reviewer: //
ETH	OD : GC Hexachlorobenzene (EPA SW	846 Method	8081B)		2110 1	
	amples listed below were reviewed for e	each of the fo	ollowing valida	ition areas. Validat	ion findings are i	noted in attac
lidat	ion findings worksheets.	_				
	Validation Area			Comi	nents	
l	Sample receipt/Technical holding times	\$				
11.	GC Instrument Performance Check	4				
III.	Initial calibration/ICV	A A	1 505	20/0. 10	1 = 20/0	
IV.	Continuing calibration	A	ecv=	20%		
V.	Laboratory Blanks	A				
VI.	Field blanks	N		·		
VII.	Surrogate spikes /===	A/A				
VIII.	Matrix spike/Matrix spike duplicates	*				
IX.	Laboratory control samples	A	105			
Х.	Field duplicates	\mathcal{N}				
XI.	Compound quantitation/RL/LOQ/LODs	A				
XII.	Target compound identification	A				
XIII.	System Performance	A				
(IV	Overall assessment of data	1				
te:	N = Not provided/applicable $R = R$	No compounds linsate Field blank	s detected	D = Duplicate TB = Trip blank EB = Equipment bla	SB=Sour OTHER: ink	ce blank
-	Client ID			Lab ID	Matrix	Date
	_DW20-SS229			2010181-13	Sediment	06/30/20
				2010181-14	Sediment	06/30/20
L				2010181-13MS	Sediment	06/30/20
L	DW20-SS229MSD			20I0181-13MSD	Sediment	06/30/20
\top						
\top						
ı ı						ı

VALIDATION FINDINGS CHECKLIST

Page: /of>

Method: Pesticides (EPA SW 846 Method 8081A)

Well-deline Asse	,,,,	NI.		F10
Validation Area	Yes	No	NA	Findings/Comments
I. Technical holding times				
Were all technical holding times met?	-			
Was cooler temperature criteria met?				
II. GC/ECD Instrument performance check	ı			
Was the instrument performance found to be acceptable?	/			
Were Evaluation mix standards analyzed prior to the initial calibration and at beginning of each 12-hour shift?				
Were endrin and 4,4'-DDT breakdowns ≤ 15% for individual breakdown in the Evaluation mix standards?			/	
Illa. Initial calibration				
Did the laboratory perform a 5 point calibration prior to sample analysis?				
Were all percent relative standard deviations (%RSD) ≤ 20%?				
Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit acceptance criteria of \geq 0.990?			/	
Were the RT windows properly established?				
IIIb. Initial calibration verification				
Was an initial calibration verification standard analyzed after each initial calibration for each instrument?				
Were all percent differences (%D) ≤ 20%?				
IV. Continuing calibration				
Was a continuing calibration analyzed daily?				
Were all percent differences (%D) ≤ 20%?				
Were all the retention times within the acceptance windows?				
V. Laboratory Blanks				
Was a laboratory blank associated with every sample in this SDG?				
Was a laboratory blank analyzed for each matrix and concentration?				
Was there contamination in the laboratory blanks?				
VI. Field blanks	ı	/		
Were field blanks identified in this SDG?			•	
Were target compounds detected in the field blanks?				
VII. Surrogate spikes/Internal Standards				
Were all surrogate percent recovery (%R) within the QC limits?				
If the percent recovery (%R) of one or more surrogates was outside QC limits, was a reanalysis performed to confirm %R?				

LDC#: 49590\$3a

VALIDATION FINDINGS CHECKLIST

Page: →of → Reviewer: — —

Validation Area	Yes	No	NA	Findings/Comments
If any percent recovery (%R) was less than 10 percent, was a reanalysis performed to confirm %R?				
Were internal standard area counts within ± 50% of the average area calculated during calibration?				
VII. Matrix spike/Matrix spike duplicates				
Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG?				
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?				
IX. Laboratory control samples				
Was an LCS analyzed per extraction batch?				
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?				
X. Field duplicates				
Were field duplicate pairs identified in this SDG?				
Were target compounds detected in the field duplicates?				
XI. Compound quantitation			·	
Did the laboratory LOQs/RLs meet the QAPP LOQs/RLs?				
Were compound quantitation and RLs adjusted to reflect all sample dilutions, dry weight factors, and clean-up activities applicable to level IV validation?				
Were relative percent difference (RPD) of the results between two columns \leq 40%?				
XII. Target compound identification				
Were the retention times of reported detects within the RT windows?				
XIII. Overall assessment of data				
Overall assessment of data was found to be acceptable.				

VALIDATION FINDINGS WORKSHEET

METHOD: Pesticides

A. alpha-BHC	K. Endrin	U. Toxaphene	EE. 2,4'-DDT	OO. oxy-Chlordane
B. beta-BHC	L. Endosulfan II	V. Aroclor-1016	FF. Hexachlorobenzene	PP. cis-Nonachlor
C. delta-BHC	M. 4,4'-DDD	W. Aroclor-1221	GG. Chlordane	QQ. trans-Nonachlor
D. gamma-BHC	N. Endosulfan sulfate	X. Aroclor-1232	HH. Chlordane (Technical)	RR. cis-Chlordane
E. Heptachlor	O. 4,4'-DDT	Y. Aroclor-1242	II. p,p'-DDE	SS. trans-Chlordane
F. Aldrin	P. Methoxychlor	Z. Aroclor-1248	JJ. p,p'-DDD	TT. alpha-Endosulphan
G. Heptachlor epoxide	Q. Endrin ketone	AA. Aroclor-1254	KK. p,p'-DDT	UU. beta-Endosulphan
H. Endosulfan I	R. Endrin aldehyde	BB. Aroclor-1260	LL. o,p'-DDT	VV. Endosulphan Sulphate
I. Dieldrin	S. alpha-Chlordane	CC. 2,4'-DDD	MM. o,p'-DDE	WW. Mirex
J. 4,4'-DDE	T. gamma-Chlordane	DD. 2,4'-DDE	NN. o,p'-DDD	

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page:_	<u></u>
Reviewer:	Q

METHOD: GC Pesticides (EPA SW 846 Method 8081A)

The calibration factors (CF) and relative standard deviation (%RSD) were recalculated using the following calculations:

CF = A/C

Average CF = sum of the CF/number of standards

%RSD = 100 * (S/X)

Where: A = Area of compound

C = Concentration of compound

S = Standard deviation of calibration factors

X = Mean of calibration factors

				Reported	Recalculated	Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compound	CF (<i> O</i> std)	CF (<i>[O</i> std)	Ave CF (initial)	Ave CF (intial)	%RSD	%RSD
1	ICAL	2/1/20	FF (STX-C4P) FF (\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1.167079	1.15/078	1.239809	1.239809	9.3	9.7
		9/1/20	开 (2)	1.151212	1.151212	1.238397	1.238397	10.5	10.5
<u> </u>									
2									
3									
4									

Comments:	Refer to Initial	Calibration 1	<u>findings w</u>	orksheet for	list of q	ualifications and	d associated	samples	when re	eported r	esults do r	not agre	e within	10.0% of	the
recalculated	l results.	_													
										7				12000	

LDC #: 49590 A30

VALIDATION FINDINGS WORKSHEET <u>Continuing Calibration Results Verification</u>

Page	:_/_of_/_
Reviewer:	PG

METHOD: GC Pesticides (EPA SW 846 Method 8081B)

Percent difference (%D) = 100 * (N - C)/N

Where: N = Initial Calibration Factor or Nominal Amount (ng)

C = Calibration Factor from Continuing Calibration Standard or Calculated Amount (ng)

Standard ID	Calibration Date/Time	Compound	Average CF/ CCV Conc	Reported CF/Conc CCV	Recalculated CF/Conc CCV	Reported %D	Recalculated %D
20/00/602	10/8/20	FF (STX-C4P) FF V 2	1.239809 1.23839T	1.1155360	1.1195356	10.5	10.0

Comments: Refer to Continuing Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

LDC #: 49590439

VALIDATION FINDINGS WORKSHEET Surrogate Results Verification

Page:_	
Reviewer:_	9-

METHOD: GC Pesticides (EPA SW 846 Method 80814)

The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the	ie followind	a calculation:
--	--------------	----------------

% Recovery: SF/SS * 100

Where: SF = Surrogate Found SS = Surrogate Spiked

Sample ID: ____

Surrogate	Column	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
				Reported	Recalculated	
Tetrachloro-m-xylene	10	40.0	23.16	57.9	57.9	
Decachlorobiphenyl	1		34.74	85.6	85.6	
Tetrachloro-m-xylene	20		2291	67.3	6T.3	
Decachlorobiphenyl		V	34.10	85.2	85.2	

Sample ID:

Surrogate	Column	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
				Reported	Recalculated	
Tetrachloro-m-xylene						
Decachlorobiphenyl						
Tetrachloro-m-xylene						
Decachlorobiphenyl						

Sample ID:

Surrogate	Column	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
				Reported	Recalculated	
Tetrachloro-m-xylene						
Decachlorobiphenyl						
Tetrachloro-m-xylene						
Decachlorobiphenyl						

Sample ID:

Surrogate	Column	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
				Reported	Recalculated	
Tetrachloro-m-xylene						
Decachlorobiphenyl						
Tetrachloro-m-xylene						
Decachlorobiphenyl						

Notes:			

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates Results Verification

METHOD: GC Pesticides (EPA SW 846 Method 8081)

The percent recoveries (%R) and Relative Percent difference (RPD) of the matrix spike and matrix spike duplicate were recalculated for the compounds identified below using the following calculation:

SA = Spike added

% Recovery = 100* (SSC-SC)/SA

Where: SSC = Spiked sample concentration

SC = Concentration

RPD = I SSCMS - SSCMSD I * 2/(SSCMS + SSCMSD)

MS = Matrix spike percent recovery

MSD = Matrix spike duplicate percent recovery

MS/MSD samples: 3/4

	s	pike	Sample		Sample	Matrix	Matrix Spike		Matrix Spike Duplicate MS/MS		S/MSD
Compound	مُن	ddedd 45)	Concentration (Conce	entration (*/***)	Percent	Recovery	Percent	Recovery		RPD
	MS	MSD		MS	MSD	Reported	Recalc.	Reported	Recalc.	Reported	Recalculated
gamma-BHC											
4,4'-DDT											
Aroclor 1260											
FF	4.00	4.00	NO	2.88	2.47	72.0	72.0	61.8	61.8	15.4	15.3

Comments: Refer of Matrix Spike/Ma	<u>atrix Spike Duplicates findings worksheet for list </u>	of qualifications and associated samples	<u>when reported results do not agree within 10.0%</u>
of the recalculated results.			

LDC #: 49590A30

VALIDATION FINDINGS WORKSHEET Laboratory Control Sample/Laboratory Control Sample Duplicate Results Verification

Page:_	<u>/of_/</u>
Reviewer:	9

METHOD: GC Pesticides (EPA SW 846 Method 80814)

The percent recoveries (%R) and Relative Percent difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100* (SSC-SC)/SA

Where: SSC = Spiked sample concentration

SC = Concentration

SA = Spike added

RPD = I LCS - LCSD I * 2/(LCS + LCSD)

LCS = Laboratory control sample percent recovery

LCSD = Laboratory control sample duplicate percent recovery

LCS/LCSD samples: BIJOO22-BS/

	Sr	oike	Spiked	Sample	LCS		LCSD		LCS/LCSD	
Compound	Ad پسر)	ded 75)	Conce	ptration	Percent	Recovery	Percent Recovery		RPD	
	LCS	LCSD	LCS	LCSD	Reported	Recalc.	Reported	Recalc.	Reported	Recalc.
gamma-BHC										
4,4'-DDT										
FF	400	NA	25/	WX	65.3	65.3				

Comments: Refer to Laboratory Control Sample/Laboratory Control Sample Duplicate findings worksheet for list of qualifications and associated samples when rep	orted
results do not agree within 10.0% of the recalculated results.	

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page:	<u>of_/</u>
Reviewer:	a

METHOD: GC Pesticides (EPA SW 846 Method 80812)

/	1/Y	N	N/A
1	V	N	N/A

Were all reported results recalculated and verified for all level IV samples?

Were all recalculated results for detected target compounds agree within 10.0% of the reported results?

Concentration =	$(A_x)(I_x)(V_t)(DF)(2.0)$
(A	A_{is})(RRF)(V_o)(V_i)(%S)

Area of the characteristic ion (EICP) for the compound to be measured

Area of the characteristic ion (EICP) for the specific internal standard

Amount of internal standard added in nanograms (ng)

Volume or weight of sample extract in milliliters (ml) or = grams (g).

Volume of extract injected in microliters (ul) =

Volume of the concentrated extract in microliters (ul) =

Df Dilution Factor.

%S Percent solids, applicable to soil and solid matrices

Factor of 2 to account for GPC cleanup

Exa	mı	ماد	
$-\lambda a$		710	

Sample I.D. NO, FF::
BIJ0022-BS/

Conc. = (17274)(80.)(2.5)(1)(85429(1.3989(12.5)(1))(1))
= 2.61 Mas

2.0	= Factor of 2 to accou	nt for GPC cleanup				
#	Sample ID	Compound		Reported Concentration	Calculated Concentration ()	Qualification
	BIJ002PS	FF		06		
			<u> </u>			
				,,		

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Duwamish AOC4

LDC Report Date:

November 16, 2020

Parameters:

Polychlorinated Biphenyls

Validation Level:

Stage 2B

Laboratory:

Analytical Resources, Inc.

Sample Delivery Group (SDG): 2010181

	Laboratory Sample	T	Collection
Sample Identification	Identification	Matrix	Date
LDW20-SS303	2010181-03	Sediment	06/29/20
LDW20-SS129	2010181-04	Sediment	06/30/20
LDW20-SS410	2010181-05	Sediment	06/30/20
LDW20-SS414	2010181-06	Sediment	06/30/20
LDW20-SS412	2010181-07	Sediment	06/30/20
LDW20-SS402	2010181-08	Sediment	06/30/20
LDW20-SS267	2010181-09	Sediment	06/30/20
LDW20-SS260	2010181-10	Sediment	06/30/20
LDW20-SS259	2010181-11	Sediment	06/30/20
LDW20-SS256	2010181-12	Sediment	06/30/20
LDW20-SS229	2010181-13	Sediment	06/30/20
LDW20-SS227	2010181-14	Sediment	06/30/20
LDW20-SS221	2010181-15	Sediment	06/30/20
LDW20-SS157	2010181-16	Sediment	06/30/20
LDW20-SS153	2010181-17	Sediment	06/30/20
LDW20-SS147	2010181-18	Sediment	06/30/20
LDW20-SS147DL	20I0181-18DL	Sediment	06/30/20
LDW20-SS143	2010181-19	Sediment	06/30/20
LDW20-SS143DL	20I0181-19DL	Sediment	06/30/20
LDW20-SS134	2010181-20	Sediment	06/30/20
LDW20-SS414MS	2010181-06MS	Sediment	06/30/20
LDW20-SS414MSD	2010181-06MSD	Sediment	06/30/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Lower Duwamish Waterway Quality Assurance Project Plan for Remedial Design of Upper Reach: Pre-Design Investigation (May 2020) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polychlorinated Biphenyls (PCBs) by Environmental Protection Agency (EPA) SW 846 Method 8082

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0% for all compounds.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all compounds with the following exceptions:

Date	Standard	Column	Compound	%D_	Associated Samples	Flag	A or P
09/03/20	SII0059-SCV1	2C	Aroclor-1260	21.5	LDW20-SS303 LDW20-SS129 LDW20-SS410 LDW20-SS414 LDW20-SS412 LDW20-SS402 LDW20-SS267 LDW20-SS259 LDW20-SS259 LDW20-SS229 LDW20-SS227 LDW20-SS227 LDW20-SS221 LDW20-SS157 LDW20-SS157 LDW20-SS153 LDW20-SS134	J (all detects) UJ (all non-detects)	A

III. Continuing Calibration

Continuing calibration was performed at required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all compounds with the following exceptions:

Date	Standard	Column	Compound	%D	Associated Samples	Flag	A or P
10/08/20	20100753ECD7	1C	Aroclor-1260	20.6	LDW20-SS259 LDW20-SS256 LDW20-SS229 LDW20-SS227 LDW20-SS221 LDW20-SS157 LDW20-SS153 LDW20-SS134	J (all detects) UJ (all non-detects)	A

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Surrogates/Internal Standards

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

All internal standard percent recoveries (%R) were within QC limits with the following exceptions:

Sample	Column	Internal Standards	%R (Limits)	Affected Compound	Flag	A or P
LDW20-SS147	1C	Hexabromobiphenyl	41 (50-200)	Aroclor-1260	J (all detects)	Α
LDW20-SS143	1C	Hexabromobiphenyl	42 (50-200)	Aroclor-1260	J (all detects)	Α

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

VIII. Laboratory Control Samples/Standard Reference Materials

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

Standard reference materials (SRM) were analyzed as required by the method. The results were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Compound Quantitation

The sample results for detected compounds from the two columns were within 40% relative percent difference (RPD) with the following exceptions:

Sample	Compound	RPD	Flag	A or P
LDW20-SS410	Aroclor-1248	51.4	J (all detects)	А
LDW20-SS134	Aroclor-1254	43.4	J (all detects)	Α
LDW20-SS147	Aroclor-1248	62.9	J (all detects)	Α
LDW20-SS143	Aroclor-1248	83	J (all detects)	А
LDW20-SS143DL	Aroclor-1254	54.8	J (all detects)	А

Raw data were not reviewed for Stage 2B validation.

XI. Target Compound Identification

Raw data were not reviewed for Stage 2B validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

In the case where more than one result was reported for an individual sample, the least technically acceptable results were deemed not reportable as follows:

Sample	Compound	Reason	Flag	A or P
LDW20-SS147 LDW20-SS143	Aroclor-1254 Aroclor-1260	Matrix interference.	Not reportable	-
LDW20-SS147DL LDW20-SS143DL	All compounds except Aroclor-1254 Aroclor-1260	Results from undiluted analyses were more usable.	Not reportable	-

Due to ICV %D, continuing calibration %D, and RPD between two columns, data were qualified as estimated in nineteen samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable.

Duwamish AOC4 Polychlorinated Biphenyls - Data Qualification Summary - SDG 2010181

Sample	Compound	Flag	A or P	Reason
LDW20-SS303 LDW20-SS129 LDW20-SS410 LDW20-SS414 LDW20-SS412 LDW20-SS402 LDW20-SS267 LDW20-SS259 LDW20-SS256 LDW20-SS256 LDW20-SS227 LDW20-SS227 LDW20-SS227 LDW20-SS221 LDW20-SS157 LDW20-SS157 LDW20-SS153 LDW20-SS134	Aroclor-1260	J (all detects) UJ (all non-detects)	А	Initial calibration verification (%D)
LDW20-SS259 LDW20-SS256 LDW20-SS229 LDW20-SS227 LDW20-SS221 LDW20-SS157 LDW20-SS153 LDW20-SS134	Aroclor-1260	J (all detects) UJ (all non-detects)	А	Continuing calibration (%D)
LDW20-SS410 LDW20-SS147 LDW20-SS143	Aroclor-1248	J (all detects)	А	Compound quantitation (RPD between two columns)
LDW20-SS134 LDW20-SS143DL	Aroclor-1254	J (all detects)	A	Compound quantitation (RPD between two columns)
LDW20-SS147 LDW20-SS143	Aroclor-1254 Aroclor-1260	Not reportable	-	Overall assessment of data
LDW20-SS147DL LDW20-SS143DL	All compounds except Aroclor-1254 Aroclor-1260	Not reportable	-	Overall assessment of data

Duwamish AOC4
Polychlorinated Biphenyls - Laboratory Blank Data Qualification Summary - SDG 2010181

No Sample Data Qualified in this SDG

Duwamish AOC4
Polychlorinated Biphenyls - Field Blank Data Qualification Summary - SDG 2010181

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

SDG #: 2010181

LDC #: 49590A3b

Stage 2B

Laboratory: Analytical Resources, Inc.

METHOD: GC Polychlorinated Biphenyls (EPA SW846 Method 8082)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
1.	Sample receipt/Technical holding times	A	
II.	Initial calibration/ICV	A non	RSO< 20%. 10/5 20%
III.	Continuing calibration	w	RSO< 20%. 10/2 20%0 CCY < 20%
IV.	Laboratory Blanks	4	
V.	Field blanks	N	,
VI.	Surrogate spikes /IS	A/5M	
VII.	Matrix spike/Matrix spike duplicates	A	
VIII.	Laboratory control samples / SRM	\triangleleft	100/3
IX.	Field duplicates	N	
X.	Compound quantitation/RL/LOQ/LODs	S w	
XI.	Target compound identification	N	
XII	Overall assessment of data	M	

Note:

A = Acceptable

N = Not provided/applicable SW = See worksheet ND = No compounds detected

R = Rinsate FB = Field blank D = Duplicate

TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	LDW20-SS303	2010181-03	Sediment	06/29/20
2	LDW20-SS129	2010181-04	Sediment	06/30/20
3	LDW20-SS410	2010181-05	Sediment	06/30/20
4	LDW20-SS414	2010181-06	Sediment	06/30/20
5	LDW20-SS412	2010181-07	Sediment	06/30/20
6	LDW20-SS402	2010181-08	Sediment	06/30/20
7	LDW20-SS267	2010181-09	Sediment	06/30/20
8	LDW20-SS260	2010181-10	Sediment	06/30/20
9	LDW20-SS259	2010181-11	Sediment	06/30/20
10	LDW20-SS256	2010181-12	Sediment	06/30/20
11	LDW20-SS229	2010181-13	Sediment	06/30/20
12	LDW20-SS227	2010181-14	Sediment	06/30/20
13	LDW20-SS221	2010181-15	Sediment	06/30/20
14	LDW20-SS157	2010181-16	Sediment	06/30/20
15	LDW20-SS153	2010181-17	Sediment	06/30/20
16	LDW20-SS147	2010181-18	Sediment	06/30/20
17	LDW20-SS147DL	20I0181-18DL	Sediment	06/30/20

SDG Labo	#: 49590A3b VALIDATION COMPLETENES #: 2010181 Stage 2B pratory: Analytical Resources, Inc. THOD: GC Polychlorinated Biphenyls (EPA SW846 Method 8082)			Date: ///9/9/Page:
18	LDW20-SS143	2010181-19	Sediment	06/30/20
19	LDW20-SS143DL	2010181-19DL	Sediment	06/30/20
20	LDW20-SS134	2010181-20	Sediment	06/30/20
21	LDW20-SS414MS	2010181-06MS	Sediment	06/30/20
22	LDW20-SS414MSD	20I0181-06MSD	Sediment	06/30/20
23				
24				
25				
Notes				

VALIDATION FINDINGS WORKSHEET

METHOD: Pesticides

A. alpha-BHC	K. Endrin	U. Toxaphene	EE. 2,4'-DDT	OO. oxy-Chlordane
B. beta-BHC	L. Endosulfan II	V. Aroclor-1016	FF. Hexachlorobenzene	PP. cis-Nonachlor
C. delta-BHC	M. 4,4'-DDD	W. Aroclor-1221	GG. Chlordane	QQ. trans-Nonachlor
D. gamma-BHC	N. Endosulfan sulfate	X. Aroclor-1232	HH. Chlordane (Technical)	RR. cis-Chlordane
E. Heptachlor	O. 4,4'-DDT	Y. Aroclor-1242	II. p,p'-DDE	SS, trans-Chlordane
F. Aldrin	P. Methoxychlor	Z. Aroclor-1248	JJ. p,p'-DDD	TT. alpha-Endosulphan
G. Heptachlor epoxide	Q. Endrin ketone	AA. Aroclor-1254	KK. p,p'-DDT	UU. beta-Endosulphan
H. Endosulfan I	R. Endrin aldehyde	BB. Aroclor-1260	LL. o,p'-DDT	VV. Endosulphan Sulphate
I. Dieldrin	S. alpha-Chlordane	CC. 2,4'-DDD	MM. o,p'-DDE	WW. Mirex
J. 4,4'-DDE	T. gamma-Chlordane	DD. 2,4'-DDE	NN. o,p'-DDD	

Notes:

LDC #:49690A35

METHOD: _GC _ HPLC

VALIDATION FINDINGS WORKSHEET Initial Calibration Verification

Page:_	<u>fof /</u>
Reviewer:_	4
2nd Reviewer:_	

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

What type of initial calibration verification calculation was performed? ___%D or ___%R

Was an initial calibration verification standard analyzed after each ICAL for each instrument?

Y(N/N/A Did the initial calibration verification standards meet the %D / %R validation criteria of <20.0% / 80-120%?

#_	Date	Standard ID	Detector/ Column	Compound	%D (Limit ≤ 20.0)	Associated Samples	Qualifications
	9/2/20	STICOS9SCV/	20	BB	21.5	Associated Samples א ב- אב - אב - אב - אב - אב	V/W/D
	77	/					
<u> </u>							
<u> </u>							
							
<u> </u>					ļ		
 							
 							
 							
<u> </u>							
<u> </u>							
L						<u> </u>	L

LDC #: 49590A 26

METHOD: VGC __ HPLC

VALIDATION FINDINGS WORKSHEET Continuing Calibration

	Page:_	<u></u>
	Reviewer:	4
2nd	Reviewer:	

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

(Y/N-N/A Y (N/N/A Were continuing calibration standards analyzed at the required frequencies?

Did the continuing calibration standards meet the %D validation criteria of ≤20.0%?

Level IV Only

Were the retention times for all calibrated compounds within their respective acceptance windows?

#	Date	Standard ID	Detector/ Column	Compound	%D (Limit)	RT (limit)	Associated Samples	Qualifications
	18/20	20/00/532007	10	\$5	20.6	(9-15.20	VW/A
	//					(
						(
						(
						(
						(
						(
						(
						(
						(
						(
						(
						(H	
						(
						(
						(
						(
						(
						(
						(
						(
						(
						(
						(
						()		

VALIDATION FINDINGS WORKSHEET Internal Standards

Page:	of
Reviewer:_	4
2nd Reviewer.	

METHOD: LC/MS Perchlorate

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Y M N/A Were all internal standard area counts within -50 to +100 of the associated calibration standard?

Were the retention times of the internal standards within +/- 30 seconds of the retention times of the associated calibration standard?

Y	17//	vvere the retention times of	i the internal standar	ds within +/- 30 seconds of the rete	sition times of the associated callor	ation standard:
#	Date	Sample ID	Internal Standard	76R Area (Limits)	RT (Limits)	Qualifications ,
		16 (BB)	HBP	41 (50-200)		1/MA ilde
				 		
		18 (BB)	HDP	42		
			, ,			
			<u> </u>		 	
\parallel					 	
						+
					 	+
H						
111		L	L	<u> </u>	<u> </u>	

Hexabromobifheny/

LDC #: 195901=10

VALIDATION FINDINGS WORKSHEET <u>Compound Quantitation and Reported CRQLs</u>

Page: _	<u>/</u> of_/
Reviewer:	9
2nd Reviewer:	

METHOD: GC __ HPLC

Level IV/D Only

YNMA) Were CRQLs adjusted for sample dilutions, dry weight factors, etc.?

Did the reported results for detected target compounds agree within 10.0% of the recalculated results?

Did the relative percent differences of detected compounds between two columns/detectors <40%?

If no, please see findings bellow.

#	Compound Name	Sample ID	%RPD Between Two Columns/Detectors Limit (≤ 40%)	Qualifications
	Z	>	51.4	Alets/A
	 	20	43.4	
	<u> </u>	16	62.9	
			77	
	Z	18	83	
	AA	19	54.8	1
	7 7 1			V
			<u> </u>	<u> </u>

VALIDATION FINDINGS WORKSHEET Overall Assessment of Data

Page: _	<u>/</u> of/
Reviewer:	4

LDC #: 47590436

METHOD: ____GC ___ HPLC

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

All available information pertaining to the data were reviewed using professional judgement to compliment the determination of the overall quality of the data.

(Y) N N/A

Was the overall quality and usability of the data acceptable?

				T
#	Compound Name	Finding	Associated Samples	Qualifications
	16.18	AA, BB (matic interference		NRA
				1/
	17,2019	All except AA, #B		
		1		

Comments:	:	

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Duwamish AOC4

LDC Report Date: November 9, 2020

Parameters: Metals

Validation Level: Stage 2B

Laboratory: Analytical Resources, Inc.

Sample Delivery Group (SDG): 2010181

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
LDW20-SS303	2010181-03	Sediment	06/29/20
LDW20-SS229	2010181-13	Sediment	06/30/20
LDW20-SS227	2010181-14	Sediment	06/30/20
LDW20-SS303MS	2010181-03MS	Sediment	06/29/20
LDW20-SS303MSD	20I0181-03MSD	Sediment	06/29/20
LDW20-SS303DUP	2010181-03DUP	Sediment	06/29/20
LDW20-SS229MS	2010181-13MS	Sediment	06/30/20
LDW20-SS229MSD	2010181-13MSD	Sediment	06/30/20
LDW20-SS229DUP	20I0181-13DUP	Sediment	06/30/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Lower Duwamish Waterway Quality Assurance Project Plan for Remedial Design of Upper Reach: Pre-Design Investigation (May 2020) and a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:

Arsenic, Cadmium, Chromium, Copper, Lead, Silver, and Zinc by Environmental Protection Agency (EPA) SW 846 Method 6020A Mercury by EPA SW 846 Method 7471B

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met with the following exceptions:

Sample	Analyte	Total Days From Sample Collection Until Analysis	Required Holding Time (in Days) From Sample Collection Until Analysis	Flag	A or P
LDW20-SS303 LDW20-SS303DUP	Mercury	85	28	J (all detects)	Р
LDW20-SS229 LDW20-SS227	Mercury	84	28	J (all detects)	Р

II. ICPMS Tune

The mass calibration was within 0.1 AMU and the percent relative standard deviation (%RSD) was less than or equal to 5%.

III. Instrument Calibration

Initial and continuing calibrations were performed as required by the methods.

The initial calibration verification (ICV) and continuing calibration verification (CCV) standards were within QC limits.

IV. ICP Interference Check Sample Analysis

The frequency of interference check sample (ICS) analysis was met. All criteria were within QC limits.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Analyte	MS (%R) (Limits)	MSD (%R) (Limits)	Flag	A or P
LDW20-SS229MS/MSD (LDW20-SS229 LDW20-SS229DUP)	Chromium	72.8 (75-125)	-	J (all detects)	A
LDW20-SS303MS/MSD (LDW20-SS303 LDW20-SS303DUP)	Mercury	6.28 (75-125)	3.94 (75-125)	J (all detects)	А

For LDW20-SS303MS/MSD, although the percent recoveries were severely low for mercury, the associated sample results were qualified as estimated (J/UJ) since the post spike recoveries were within the QC limits for this analyte.

Relative percent differences (RPD) were within QC limits.

VIII. Duplicate Sample Analysis

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits with the following exceptions:

DUP ID (Associated Samples)	Analyte	RPD (Limits)	Difference (Limits)	Flag	A or P
LDW20-SS229MS/MSD (LDW20-SS229 LDW20-SS229DUP)	Chromium Lead	22.5 (≤20) 25.6 (≤20)		J (all detects) J (all detects)	A
LDW20-SS303MS/MSD (LDW20-SS303 LDW20-SS303DUP)	Mercury	-	0.4778 mg/Kg (≤0.0908)	J (all detects)	A

IX. Serial Dilution

Serial dilution was not performed for this SDG.

X. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the methods. Percent recoveries (%R) were within QC limits.

XI. Field Duplicates

No field duplicates were identified in this SDG.

XII. Internal Standards (ICP-MS)

Raw data were not reviewed for Stage 2B validation.

XIII. Sample Result Verification

Raw data were not reviewed for Stage 2B validation.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the methods. No results were rejected in this SDG.

Due to technical holding time, MS/MSD %R, and DUP RPD and difference, data were qualified as estimated in five samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable.

Duwamish AOC4 Metals - Data Qualification Summary - SDG 2010181

Sample	Analyte	Flag	A or P	Reason
LDW20-SS303 LDW20-SS229 LDW20-SS227 LDW20-SS303DUP	Mercury	J (all detects)	P	Technical holding times
LDW20-SS229 LDW20-SS229DUP	Chromium	J (all detects)	А	Matrix spike/Matrix spike duplicate (%R)
LDW20-SS303 LDW20-SS303DUP	Mercury	J (all detects)	А	Matrix spike/Matrix spike duplicate (%R)
LDW20-SS229 LDW20-SS229DUP	Chromium Lead	J (all detects) J (all detects)	А	Duplicate sample analysis (RPD)
LDW20-SS303 LDW20-SS303DUP	Mercury	J (all detects)	А	Duplicate sample analysis (difference)

Duwamish AOC4

Metals - Laboratory Blank Data Qualification Summary - SDG 2010181

No Sample Data Qualified in this SDG

Duwamish AOC4

Metals - Field Blank Data Qualification Summary - SDG 2010181

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET LDC #: 49590A4a

SDG #: 2010181 Laboratory: Analytical Resources, Inc. Stage 2B

2nd Reviewer:

METHOD: Metals (EPA SW 846 Method 6020A/7471B)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
l.	Sample receipt/Technical holding times	A SW	
II	ICP/MS Tune	A	
111.	Instrument Calibration	A	
IV.	ICP Interference Check Sample (ICS) Analysis	A	
V.	Laboratory Blanks	A	
VI.	Field Blanks	N,	
VII.	Matrix Spike/Matrix Spike Duplicates	SW,	
VIII.	Duplicate sample analysis	SW	
IX.	Serial Dilution	\sim	
X.	Laboratory control samples	 	LCS
XI.	Field Duplicates	N	
XII.	Internal Standard (ICP-MS)	N	notreviewed
XIII.	Sample Result Verification	N	
XIV	Overall Assessment of Data	A	

Note:

A = Acceptable

N = Not provided/applicable SW = See worksheet

ND = No compounds detected

R = Rinsate

TB = Trip blank EB = Equipment blank FB = Field blank

D = Duplicate

SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	LDW20-SS303	2010181-03	Sediment	06/29/20
2	LDW20-SS229	2010181-13	Sediment	06/30/20
3	LDW20-SS227	2010181-14	Sediment	06/30/20
4	LDW20-SS303MS	2010181-03MS	Sediment	06/29/20
5	LDW20-SS303MSD	2010181-03MSD	Sediment	06/29/20
6	LDW20-SS303DUP	2010181-03DUP	Sediment	06/29/20
7	LDW20-SS229MS	20I0181-13MS	Sediment	06/30/20
8	LDW20-SS229MSD	2010181-13MSD	Sediment	06/30/20
9	LDW20-SS229DUP	2010181-13DUP	Sediment	06/30/20
10				
11_				
12			<u> </u>	

Notes:		
		_

VALIDATION FINDINGS WORKSHEET Sample Specific Element Reference

All elements are applicable to each sample as noted below.

Sample ID	Target Analyte List
2, 3	As, Cd, Cr, Cu, Pb, Ag, Zn, Hg
	1 Hg
QC:	
4 to 6	Hg
7 to 9	As, Cd, Cr, Cu, Pb, Ag, Zn
	Analysis Advalored

Analysis Method

ICP	
ICP-MS	As, Cd, Cr, Cu, Pb, Ag, Zn
CVAA	Hg

METHOD: Trace Metals (EPA SW 846 Methods 6010/6020/7000)

All samples were properly preserved (water samples to a pH of <2) and analyzed within the required holding time with the following exceptions.

Method:		Mercury by 7471B, HT = 28 days				
Sample ID	Sampling Date	Analysis Date	Total Time from Collection to Analysis (Days)	Qualifier	Det/ND	
6,1	6/29/2020	9/22/2020	85	J/R/P	Det	
2, 3	6/30/2020	9/22/2020	84	J/R/P	Det	

METHOD: Trace Metals (EPA SW 846 Methods 6010/6020/7000)

MS/MSD analysis was performed by the laboratory. All MS/MSD percent recoveries (%R) and relative percent differences (RPDs) were within the acceptable limits with the following exceptions:

MS/MSD										
D	Matrix	Analyte	MS %R	MSD %R	%R Limit	RPD	RPD Limit	Associated Samples	Qualification	Det/ND
7, 8	S	Cr	72.8		75-125			9, 2	J/UJ/A	Det
								7		
4, 5	S	Hg	6.28	3.94	75-125			6, 1	J/UJ/A	Det
									(PS = 98.3%)	

Comments:

METHOD: Trace Metals (EPA SW 846 Methods 6010/6020/7000)

Laboratory duplicate analysis was performed by the laboratory. All laboratory duplicates were with the relative percent difference (RPD) for samples >5X the reporting limits with the exceptions listed below. If samples were <5X the reporting limits, the difference was within 1X the reporting limit for water samples and within 2X the reporting limit for soil samples for all samples with the exceptions listed below.

Ouplicate ID	Matrix	Analyte	RPD	RPD Limit	Difference (mg/Kg)	Difference Limit	Associated Samples	Qualification	Det/ND
	s	Cr	22.5					J/UJ/A	Det
		Pb	25.6					J/UJ/A	Det
)		
6	S	Hg			0.4778	0.0908	6 , 1	J/UJ/A	Det
							,		
		ļ	ļ						
								_	
		<u> </u>				<u> </u>			
		 							
			 						
			<u> </u>						

Comments:

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Duwamish AOC4

LDC Report Date:

November 9, 2020

Parameters:

Wet Chemistry

Validation Level:

Stage 2B

Laboratory:

Analytical Resources, Inc.

Sample Delivery Group (SDG): 2010181

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
LDW20-SS384	2010181-01	Sediment	06/29/20
LDW20-SS385	2010181-02	Sediment	06/29/20
LDW20-SS303	2010181-03	Sediment	06/29/20
LDW20-SS129	2010181-04	Sediment	06/30/20
LDW20-SS410	2010181-05	Sediment	06/30/20
LDW20-SS414	2010181-06	Sediment	06/30/20
LDW20-SS412	2010181-07	Sediment	06/30/20
LDW20-SS402	2010181-08	Sediment	06/30/20
LDW20-SS267	2010181-09	Sediment	06/30/20
LDW20-SS260	2010181-10	Sediment	06/30/20
LDW20-SS259	2010181-11	Sediment	06/30/20
LDW20-SS256	2010181-12	Sediment	06/30/20
LDW20-SS229	2010181-13	Sediment	06/30/20
LDW20-SS227	2010181-14	Sediment	06/30/20
LDW20-SS221	2010181-15	Sediment	06/30/20
LDW20-SS157	2010181-16	Sediment	06/30/20
LDW20-SS153	2010181-17	Sediment	06/30/20
LDW20-SS147	2010181-18	Sediment	06/30/20
LDW20-SS143	2010181-19	Sediment	06/30/20
LDW20-SS134	2010181-20	Sediment	06/30/20
LDW20-SS384MS	2010181-01MS	Sediment	06/29/20
LDW20-SS384DUP	2010181-01DUP	Sediment	06/29/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Lower Duwamish Waterway Quality Assurance Project Plan for Remedial Design of Upper Reach: Pre-Design Investigation (May 2020) and a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:

Total Organic Carbon by Environmental Protection Agency (EPA) SW 846 Method 9060A

Total Solids by Standard Method 2540G

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. Initial Calibration

All criteria for the initial calibration of each method were met.

III. Continuing Calibration

Continuing calibration frequency and analysis criteria were met for each method when applicable.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits.

VII. Duplicate Sample Analysis

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits.

VIII. Laboratory Control Samples/Standard Reference Materials

Laboratory control samples (LCS) were analyzed as required by the methods. Percent recoveries (%R) were within QC limits.

Standard reference materials (SRM) were analyzed as required by the methods. The results were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Sample Result Verification

Raw data were not reviewed for Stage 2B validation.

XI. Overall Assessment of Data

The analysis was conducted within all specifications of the methods. No results were rejected in this SDG.

The quality control criteria reviewed were met and are considered acceptable.

Duwamish AOC4
Wet Chemistry - Data Qualification Summary - SDG 2010181

No Sample Data Qualified in this SDG

Duwamish AOC4
Wet Chemistry - Laboratory Blank Data Qualification Summary - SDG 20I0181

No Sample Data Qualified in this SDG

Duwamish AOC4
Wet Chemistry - Field Blank Data Qualification Summary - SDG 2010181

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET LDC #: 49590A6 SDG #: _2010181

Stage 2B

Laboratory: Analytical Resources, Inc.

Reviewer: 2nd Reviewer:

METHOD: (Analyte) TOC (EPA SW846 9060A), Total Solids (SM 2540G)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
<u>l.</u>	Sample receipt/Technical holding times	AISW	
	Initial calibration	A	
111.	Calibration verification	A	
IV	Laboratory Blanks	A	
V	Field blanks	N	
VI.	Matrix Spike/Matrix Spike Duplicates	A	
VII.	Duplicate sample analysis	4	
VIII.	Laboratory control samples	A	LCS, SOM
IX.	Field duplicates	\mathcal{N}	
X.	Sample result verification	N	
XI	Overall assessment of data	A	

Note: A = Acceptable

N = Not provided/applicable SW = See worksheet

ND = No compounds detected

R = Rinsate

FB = Field blank

D = Duplicate TB = Trip blank

EB = Equipment blank

SB=Source blank OTHER:

				
	Client ID	Lab ID	Matrix	Date
1_	LDW20-SS384	2010181-01	Sediment	06/29/20
2	LDW20-SS385	2010181-02	Sediment	06/29/20
3	LDW20-SS303	2010181-03	Sediment	06/29/20
4	LDW20-SS129	2010181-04	Sediment	06/30/20
5	LDW20-SS410	2010181-05	Sediment	06/30/20
6	LDW20-SS414	2010181-06	Sediment	06/30/20
7	LDW20-SS412	2010181-07	Sediment	06/30/20
8	LDW20-SS402	2010181-08	Sediment	06/30/20
9	LDW20-SS267	2010181-09	Sediment	06/30/20
10	LDW20-SS260	2010181-10	Sediment	06/30/20
11	LDW20-SS259	2010181-11	Sediment	06/30/20
12	LDW20-SS256	2010181-12	Sediment	06/30/20
13	LDW20-SS229	2010181-13	Sediment	06/30/20
14_	LDW20-SS227	2010181-14	Sediment	06/30/20
15	LDW20-SS221	2010181-15	Sediment	06/30/20
16	LDW20-SS157	2010181-16	Sediment	06/30/20
17_	LDW20-SS153	2010181-17	Sediment	06/30/20

LDC #:_	49590A6	VALIDATION COMPLETENESS WORKSHEET
SDG #:_	2010181	Stage 2B
Laborato	ry: Analytica	Resources, Inc.

Date: 11/5/20
Page: 2of 2
Reviewer: 21

METHOD: (Analyte) TOC (EPA SW846 9060A), Total Solids (SM 2540G)

18	LDW20-SS147	2010181-18	Sediment	06/30/20
19	LDW20-SS143	2010181-19	Sediment	06/30/20
20_	LDW20-SS134	2010181-20	Sediment	06/30/20
21	LDW20-SS384MS	2010181-01MS	Sediment	06/29/20
22	LDW20-SS384DUP	2010181-01DUP	Sediment	06/29/20
23_				
24				
25				ļ

VALIDATION FINDINGS WORKSHEET Sample Specific Element Reference

All elements are applicable to each sample as noted below.

Sample ID	Target Analyte List	
1 to 20	Total solids, TOC	
QC:		
	21 TOC	
	22 Total solids, TOC	

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Duwamish AOC4

LDC Report Date:

November 11, 2020

Parameters:

Polychlorinated Dioxins/Dibenzofurans

Validation Level:

Stage 2B

Laboratory:

Analytical Resources, Inc.

Sample Delivery Group (SDG): 2010181

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
LDW20-SS303	2010181-03	Sediment	06/29/20
LDW20-SS267	2010181-09	Sediment	06/30/20
LDW20-SS260	2010181-10	Sediment	06/30/20
LDW20-SS259	2010181-11	Sediment	06/30/20
LDW20-SS256	2010181-12	Sediment	06/30/20
LDW20-SS303DUP	20I0181-03DUP	Sediment	06/29/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Lower Duwamish Waterway Quality Assurance Project Plan for Remedial Design of Upper Reach: Pre-Design Investigation (May 2020) and a modified outline of the USEPA National Functional Guidelines (NFG) for High Resolution Superfund Methods Data Review (April 2016). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polychlorinated Dioxins/Dibenzofurans by Environmental Protection Agency (EPA) Method 1613B

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered not detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. HRGC/HRMS Instrument Performance Check

Instrument performance was checked at the required frequency.

Retention time windows were established for all homologues. The chromatographic resolution between 2,3,7,8-TCDD and peaks representing any other unlabeled TCDD isomer was less than or equal to 25%.

The static resolving power was at least 10,000 (10% valley definition).

III. Initial Calibration and Initial Calibration Verification

A five point initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0% for unlabeled compounds and less than or equal to 35.0% for labeled compounds.

The ion abundance ratios for all PCDDs and PCDFs were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were within the QC limits for unlabeled compounds and labeled compounds.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

All of the continuing calibration results were within the QC limits for unlabeled compounds and labeled compounds with the following exceptions:

Date	Compound	Concentration (Limits)	Associated Samples	Flag	A or P
10/16/20	1,2,3,4,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF	59.7 ng/mL (45-56) 57.9 ng/mL (45-56) 59.9 ng/mL (45-55) 60.1 ng/mL (43-58)	All samples in SDG 20I0181	J (all detects) J (all detects) J (all detects) J (all detects)	Р

The ion abundance ratios for all PCDDs and PCDFs were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks with the following exceptions:

Blank ID	Extraction Date	Compound	Concentration	Associated Samples
BIJ0143-BLK1	10/08/20	OCDD	0.486 ng/Kg	All samples in SDG 20l0181

Sample concentrations were compared to concentrations detected in the laboratory blanks. The sample concentrations were either not detected or were significantly greater than the concentrations found in the associated laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Matrix Spike/Matrix Spike Duplicates/Duplicate Sample Analysis

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits.

VIII. Laboratory Control Samples/Standard Reference Materials

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

Standard reference materials (SRM) were analyzed as required by the method. The results were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Labeled Compounds

All percent recoveries (%R) for labeled compounds used to quantitate target compounds were within QC limits.

XI. Compound Quantitation

All compound quantitations were within validation criteria with the following exceptions:

Sample	Compound	Flag	A or P
All samples in SDG 20l0181	All compounds reported as estimated maximum possible concentration (EMPC) and greater than the reporting limit.	J (all detects)	Α
All samples in SDG 20l0181	All compounds reported as estimated maximum possible concentration (EMPC) and less than the reporting limit.	U (all non-detects)	А
LDW20-SS260 LDW20-SS256	All results flagged "X" by the laboratory due to chlorinated diphenyl ether (CDPE) interference.	J (all detects)	A

Raw data were not reviewed for Stage 2B validation.

XII. Target Compound Identifications

Raw data were not reviewed for Stage 2B validation.

XIII. System Performance

Raw data were not reviewed for Stage 2B validation.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Due to continuing calibration concentration, compounds reported as EMPC, and CDPE interference, data were qualified as estimated in six samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable.

Duwamish AOC4 Polychlorinated Dioxins/Dibenzofurans - Data Qualification Summary - SDG 2010181

Sample	Compound	Flag	A or P	Reason
LDW20-SS303 LDW20-SS267 LDW20-SS260 LDW20-SS259 LDW20-SS256 LDW20-SS303DUP	1,2,3,4,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF	J (all detects)	Р	Continuing calibration (concentration)
LDW20-SS303 LDW20-SS267 LDW20-SS260 LDW20-SS259 LDW20-SS256 LDW20-SS303DUP	All compounds reported as estimated maximum possible concentration (EMPC) and greater than the reporting limit.	J (all detects)	А	Compound quantitation (EMPC)
LDW20-SS303 LDW20-SS267 LDW20-SS260 LDW20-SS259 LDW20-SS256 LDW20-SS303DUP	All compounds reported as estimated maximum possible concentration (EMPC) and less than the reporting limit.	sible concentration (EMPC)		Compound quantitation (EMPC)
LDW20-SS260 LDW20-SS256	All results flagged "X" by the laboratory due to chlorinated diphenyl ether (CDPE) interference.	J (all detects)	А	Compound quantitation (CDPE interference)

Duwamish AOC4

Polychlorinated Dioxins/Dibenzofurans - Laboratory Blank Data Qualification Summary - SDG 2010181

No Sample Data Qualified in this SDG

Duwamish AOC4

Polychlorinated Dioxins/Dibenzofurans - Field Blank Data Qualification Summary - SDG 2010181

No Sample Data Qualified in this SDG

SDG	#: 49590A21 VALIDAT #: 2010181 ratory: Analytical Resources, Inc.		LETEN tage 2E	ESS WORKSHE		Date: // 9/2 Page:		
MET	ETHOD: HRGC/HRMS Polychlorinated Dioxins/Dibenzofurans (EPA Method 1613B)							
	he samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached alidation findings worksheets.							
	Validation Area Comments							
I.	Sample receipt/Technical holding times	A						
H.	HRGC/HRMS Instrument performance chec	.k 🖈						
111.	Initial calibration/ICV	AIA	RSZ	b < 20/3570	· KeV=	Re linite		
IV.	Continuing calibration	W/	æV	< &c lim	its			
V.	Laboratory Blanks	W						
VI.	Field blanks	N						
VII.	Matrix spike/Matrix spike duplicates / 👊	P N/A						
VIII.		AA	10	>	ė.			
IX.	Field duplicates	N						
X.	Internal standards	-A			·····			
XI.	Compound quantitation RL/LOQ/LODs	₹ _N						
XII.	Target compound identification	N						
XIII.		N						
XIV.		A	*					
Note:	A = Acceptable ND N = Not provided/applicable R =) = No compounds = Rinsate = Field blank	detected	D = Duplicate TB = Trip blank EB = Equipmen	OTHE	ource blank :R:		
	Client ID			Lab ID	Matrix	Date		
1	LDW20-SS303			2010181-03	Sediment	06/29/20		
2	LDW20-SS267			2010181-09	Sediment	06/30/20		
3	LDW20-SS260	*		2010181-10	Sediment	06/30/20		
4	LDW20-SS259	2010181-11	Sediment	06/30/20				
5	LDW20-SS256			2010181-12	Sediment	06/30/20		
6	LDW20-SS303DUP			20I0181-03DUP	Sediment	06/29/20		
7								
8								
9								
10								
lotes:								
	B#10143							
1								

VALIDATION FINDINGS WORKSHEET

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA Method 1613B)

A. 2,3,7,8-TCDD	F. 1,2,3,4,6,7,8-HpCDD	K. 1,2,3,4,7,8-HxCDF	P. 1,2,3,4,7,8,9-HpCDF	U. Total HpCDD
B. 1,2,3,7,8-PeCDD	G. OCDD	L. 1,2,3,6,7,8-HxCDF	Q. OCDF	V. Total TCDF
C. 1,2,3,4,7,8-HxCDD	H. 2,3,7,8-TCDF	M. 2,3,4,6,7,8-HxCDF	R. Total TCDD	W. Total PeCDF
D. 1,2,3,6,7,8-HxCDD	I. 1,2,3,7,8-PeCDF	N. 1,2,3,7,8,9-HxCDF	S. Total PeCDD	X. Total HxCDF
E. 1,2,3,7,8,9-HxCDD	J. 2,3,4,7,8-PeCDF	O. 1,2,3,4,6,7,8-HpCDF	T. Total HxCDD	Y. Total HpCDF

Notes:		
Notes	 	

LDC #: 49590A2/

VALIDATION FINDINGS WORKSHEET <u>Continuing Calibration</u>

Page:	<u>/</u> of <u>/</u> _
Reviewer:	4

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA Method 1613B)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Was a continuing calibration performed at the beginning of each 12 hour period?

Were all concentrations within method QC limits for unlabeled and labeled compounds?

Y /N N/A Did all continuing calibration standards meet the Ion Abundance Ratio criteria?

#	Date	Standard ID	Compound	conc (ng/mL) Finding %D -	Finding Ion Abundance Ratio	Associated Samples	Qualifications
	10/16/20	20/01609A	K	39. (45-56)		All (dets)	VMA
ļ	. /		N	57.91 1)			/_/
-			0	599(45-55) 60.1(43-58			
<u> </u>			P	60.1(43-68			V
-							
<u> </u>							190 + X
-							
<u> </u>							
 		···					
ļ							
ļ							
ļ							
-							
	<u> </u>						
ļ							
							
 							
<u> </u>							

LDC #: 49590A21

VALIDATION FINDINGS WOR/UHEET Blanks

Page: 1 of 1
Reviewer: PG

METHOD: HRGC/HRMS Dioxins (EPA Method 1613B)

Blank extraction date: 10/8/20 Blank analysis date: 10/16/20

Conc. units: ng/kg

Associated samples: All qual U

	nc. units. hg/g												
Compound	Blank ID		Sample Identification										
	BIJ0143-BLK1	5X											
G	0.486	2.43											
												i -	
		ļ	<u> </u>										
								-					
						<u> </u>	L		L	<u></u>	L		L

LDC #: 49690A 2

VALIDATION FINDINGS WORKSHEET Compound Quantitation and Reported RLs

Page: _	<u>/</u> of_/
Reviewer:	PG

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA Method 1613B)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Υ	N	N/A)
Y	N	N/A

Were the correct labeled compound, quantitation ions and relative response factors (RRF) used to quantitate the compound? Compound quantitation and RLs were adjusted to reflect all sample dilutions and dry weight factors (if necessary).

#	Date	Sample ID	Finding	Associated Samples	Qualifications
		All	All compounds reported as estimated maximum		Jdets/A
			possible concentration (EMPC) > RL		
		A/	All compounds reported as estimated maximum		U/A
			possible concentration (EMPC) < RL		
		3,5	All compounds flagged "X" due to chlorinated		Jdets/A
			diphenyl either interference		

Comments:	See sample calculation verification worksheet for recalculations

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Duwamish AOC4

LDC Report Date:

November 16, 2020

Parameters:

Semivolatiles

Validation Level:

Stage 2B

Laboratory:

Analytical Resources, Inc.

Sample Delivery Group (SDG): 2010192

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
LDW20-SS380	2010192-19	Sediment	06/26/20
LDW20-SC153B	2010192-22	Sediment	06/26/20
LDW20-SS380MS	2010192-19MS	Sediment	06/26/20
LDW20-SS380MSD	2010192-19MSD	Sediment	06/26/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Lower Duwamish Waterway Quality Assurance Project Plan for Remedial Design of Upper Reach: Pre-Design Investigation (May 2020) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Semivolatile Organic Compounds (SVOCs) by Environmental Protection Agency (EPA) SW 846 Method 8270E

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

A decafluorotriphenylphosphine (DFTPP) tune was performed at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0% for all compounds.

Average relative response factors (RRF) for all compounds were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 30.0% for all compounds.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all compounds with the following exceptions:

Date	Compound	%D	Associated Samples	Flag	A or P
10/06/20	Indeno(1,2,3-cd)pyrene Dibenzo(a,h)anthracene Benzo(g,h,i)perylene	29.2 23.7 37.2	All samples in SDG 20I0192	J (all detects) UJ (all non-detects)	А

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Compound	MS (%R) (Limits)	MSD (%R) (Limits)	Flag	A or P
LDW20-SS380MS/MSD (LDW20-SS380)	Indeno(1,2,3-cd)pyrene Dibenzo(a,h)anthracene	135 (42-123) -	142 (42-123) 137 (30-133)	NA	-
LDW20-SS380MS/MSD (LDW20-SS380)	Benzo(g,h,i)perylene	-	136 (38-126)	J (all detects)	А

Relative percent differences (RPD) were within QC limits.

IX. Laboratory Control Samples/Standard Reference Materials

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits with the following exceptions:

LCS ID	Compound	%R (Limits)	Associated Samples	Flag	A or P
BII0789-BS1	Indeno(1,2,3-cd)pyrene	132 (42-123)	LDW20-SS380	NA	-
BII0789-BS1	Indeno(1,2,3-cd)pyrene	132 (42-123)	LDW20-SC153B	J (all detects)	Р

Standard reference materials (SRM) were analyzed as required by the method. The results were within QC limits.

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Compound Quantitation

Raw data were not reviewed for Stage 2B validation.

XIII. Target Compound Identifications

Raw data were not reviewed for Stage 2B validation.

XIV. System Performance

Raw data were not reviewed for Stage 2B validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Due to continuing calibration %D, MS/MSD %R, and LCS %R, data were qualified as estimated in two samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable.

Duwamish AOC4 Semivolatiles - Data Qualification Summary - SDG 2010192

Sample	Compound	Flag	A or P	Reason
LDW20-SS380 LDW20-SC153B	Indeno(1,2,3-cd)pyrene Dibenzo(a,h)anthracene Benzo(g,h,i)perylene	J (all detects) UJ (all non-detects)	А	Continuing calibration (%D)
LDW20-SS380	Benzo(g,h,i)perylene	J (all detects)	Α	Matrix spike/Matrix spike duplicate (%R)
LDW20-SC153B	Indeno(1,2,3-cd)pyrene	J (all detects)	Р	Laboratory control samples (%R)

Duwamish AOC4

Semivolatiles - Laboratory Blank Data Qualification Summary - SDG 2010192

No Sample Data Qualified in this SDG

Duwamish AOC4

Semivolatiles - Field Blank Data Qualification Summary - SDG 2010192

No Sample Data Qualified in this SDG

SDG	#: 49590B2a VALIDATIO #: 2010192 ratory: Analytical Resources, Inc.		LETEN tage 2B		WORKSHEET		P	Date://///age:_/of_/ ewer:_(\frac{1}{2}
MET	HOD: GC/MS Semivolatiles (EPA SW 846	6 Method 82	270E)					
	samples listed below were reviewed for ea ation findings worksheets.	ch of the fo	ollowing v	alidati	on areas. Validatior	i fin	dings are note	d in attached
	Validation Area Comments							
1.	Sample receipt/Technical holding times	A						
11.	GC/MS Instrument performance check	A						
111	Initial calibration/ICV	AIA	RST	× = -	20/0 . 20/1	_/	=V \ 30	0
ΙV	Continuing calibration	W	æ	V <u> </u>	20/6			
V.	Laboratory Blanks	A	! 					
VI	Field blanks	N						
VII	Surrogate spikes	A						
VII	. Matrix spike/Matrix spike duplicates	W						
IX	Laboratory control samples / SEM	W/A	100	<u> </u>				
X.	Field duplicates	W						
ΧI	Internal standards	A	!					
XII	Compound quantitation RL/LOQ/LODs	N	 					
XII	. Target compound identification	N						
ΧIV	. System performance	N						
ΧV	Overall assessment of data	7A						
Note:	N = Not provided/applicable R = Rir	lo compounds nsate ield blank	detected		D = Duplicate TB = Trip blank EB = Equipment blank		SB=Source black	ank
	Client ID				Lab ID	N	latrix	Date
1_	LDW20-SS380				2010192-19	s	ediment	06/26/20
2	LDW20-SC153B				2010192-22	s	ediment	06/26/20
3	LDW20-SS380MS				2010192-19MS	s	ediment	06/26/20
4	LDW20-SS380MSD				2010192-19MSD	s	ediment	06/26/20
5								
6								
7_	·							
8			_					
9]				
Notes								
\vdash	BIT0789							·
\vdash								

VALIDATION FINDINGS WORKSHEET

METHOD: GC/MS SVOA

A. Phenol	CC. Dimethylphthalate	EEE. Bis(2-ethylhexyl)phthalate	GGGG. C30-Hopane	I1. Methyl methanesulfonate
B. Bis (2-chloroethyl) ether	DD. Acenaphthylene	FFF. Di-n-octylphthalate	HHHH. 1-Methylphenanthrene	J1. Ethyl methanesulfonate
C. 2-Chlorophenol	EE. 2,6-Dinitrotoluene	GGG. Benzo(b)fluoranthene	IIII. 1,4-Dioxane	K1. o,o',o"-Triethylphosphorothioate
D. 1,3-Dichlorobenzene	FF. 3-Nitroaniline	HHH. Benzo(k)fluoranthene	JJJJ. Acetophenone	L1. n-Phenylene diamine
E. 1,4-Dichlorobenzene	GG. Acenaphthene	III. Benzo(a)pyrene	KKKK. Atrazine	M1. 1,4-Naphthoquinone
F. 1,2-Dichlorobenzene	HH. 2,4-Dinitrophenol	JJJ. Indeno(1,2,3-cd)pyrene	LLLL. Benzaldehyde	N1. N-Nitro-o-toluidine
G. 2-Methylphenol	II. 4-Nitrophenol	KKK. Dibenz(a,h)anthracene	MMMM. Caprolactam	O1. 1,3,5-Trinitrobenzene
H. 2,2'-Oxybis(1-chloropropane)	JJ. Dibenzofuran	LLL. Benzo(g,h,i)perylene	NNNN. 2,6-Dichlorophenol	P1. Pentachlorobenzene
I. 4-Methylphenol	KK. 2,4-Dinitrotoluene	MMM. Bis(2-Chloroisopropyl)ether	OOOO. 1,2-Diphenylhydrazine	Q1. 4-Aminobiphenyl
J. N-Nitroso-di-n-propylamine	LL. Diethylphthalate	NNN. Aniline	PPPP. 3-Methylphenol	R1. 2-Naphthylamine
K. Hexachloroethane	MM. 4-Chlorophenyl-phenyl ether	OOO. N-Nitrosodimethylamine	QQQQ. 3&4-Methylphenol	S1. Triphenylene
L. Nitrobenzene	NN. Fluorene	PPP. Benzoic Acid	RRRR. 4-Dimethyldibenzothiophene (4MDT)	T1. Octachlorostyrene
M. Isophorone	OO. 4-Nitroaniline	QQQ. Benzyl alcohol	SSSS. 2/3-Dimethyldibenzothiophene (4MDT)	U1. Famphur
N. 2-Nitrophenol	PP. 4,6-Dinitro-2-methylphenol	RRR. Pyridine	TTTT. 1-Methyldibenzothiophene (1MDT)	V1. 1,4-phenylenediamine
O. 2,4-Dimethylphenol	QQ. N-Nitrosodiphenylamine	SSS. Benzidine	UUUU 2,3,4,6-Tetrachlorophenol	W1. Methapyrilene
P. Bis(2-chloroethoxy)methane	RR. 4-Bromophenyl-phenylether	TTT. 1-Methylnaphthalene	VVVV. 1,2,4,5-Tetrachlorobenzene	X1. Pentachloroethane
Q. 2,4-Dichlorophenol	SS. Hexachlorobenzene	UUU.Benzo(b)thiophene	WWWW 2-Picoline	Y1. 3,3'-Dimethylbenzidine
R. 1,2,4-Trichlorobenzene	TT. Pentachlorophenol	VVV.Benzonaphthothiophene	XXXX. 3-Methylcholanthrene	Z1. o-Toluidine
S. Naphthalene	UU. Phenanthrene	WWW.Benzo(e)pyrene	YYYY. a,a-Dimethylphenethylamine	A2. 1-Naphthylamine
T. 4-Chloroaniline	VV. Anthracene	XXX. 2,6-Dimethylnaphthalene	ZZZZ. Hexachloropropene	B2. 4-Aminobiphenyl
U. Hexachlorobutadiene	WW. Carbazole	YYY. 2,3,5-Trimethylnaphthalene	A1. N-Nitrosodiethylamine	C2. 4-Nitroquinoline-1-oxide
V. 4-Chloro-3-methylphenol	XX. Di-n-butylphthalate	ZZZ. Perylene	B1. N-Nitrosodi-n-butylamine	D2. Hexachloropene
W. 2-Methylnaphthalene	YY. Fluoranthene	AAAA. Dibenzothiophene	C1. N-Nitrosomethylethylamine	E2. Bis (2-chloro-1-methylethyl) ether
X. Hexachlorocyclopentadiene	ZZ. Pyrene	BBBB. Benzo(a)fluoranthene	D1. N-Nitrosomorpholine	F2. Bifenthrin
Y. 2,4,6-Trichlorophenol	AAA. Butylbenzylphthalate	CCCC. Benzo(b)fluorene	E1. N-Nitrosopyrrolidine	G2. Cyfluthrin
Z. 2,4,5-Trichlorophenol	BBB. 3,3'-Dichlorobenzidine	DDDD. cis/trans-Decalin	F1. Phenacetin	H2. Cypermethrin
AA. 2-Chloronaphthalene	CCC. Benzo(a)anthracene	EEEE. 1,1'-Biphenyl	G1. 2-Acetylaminofluorene	I2. Permethrin (cis/trans)
BB. 2-Nitroaniline	DDD. Chrysene	FFFF. Retene	H1. Pronamide	J2. 5-Nitro-o-toluidine

LDC#:<u>49596B</u>ZA

VALIDATION FINDINGS WORKSHEET <u>Continuing Calibration</u>

Page:_	of_	_
Reviewer:_	4	_
2nd Reviewer:		

METHOD: GC/MS BNA (EPA SW 846 Method 8270D)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?

Y/N N/A

Were percent differences (%D) ≤20 % and relative response factors (RRF) within the method criteria?

#		Standard ID	Compound	Finding %D (Limit: <20.0%)	Finding RRF (Limit)	Associated Samples	Qualifications
	Date	NT/1020/00604	W HK	29.2 23.7 37.2		All (Ad3+NO)	VINA
-			HK.	23./			
-			44	≤/.~			
						 	
					<u> </u>		
				1			

 	1						
 							
<u> </u>							
						<u>.</u>	
	_						

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates

Page:_	_/of_/
Reviewer:	9

METHOD: GC/MS BNA (EPA SW 846 Method 8270D)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated

MS/MSD. Soil / Water.

Was a MS/MSD analyzed every 20 samples of each matrix?

N)N/A Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?

#	MS/MSD ID	Compound	MS %R (Limits)	MSD %R (Limits)	RPD (Limits)	Associated Samples	Qualifications
	3/4	W	135 (12-123)	142 (42-12)	→ ()	1 (NO)	Set 1
		KK	()	142 (45-12) 137 (30-13) 136 (38-12)	} ()	/	Y
		44	()	136 (38-126	S) ()	(dots)	N
			()	() ()		
			()	() ()		
			()	() ()		
			()	() ()		
ļ			()	() ()		
				() ()	 	
			()	() ()		
 			()	() ()		
 			()	() ()		
 			()	() ()		
\vdash			()	() ()		
\vdash			()) ()		
 			()	() (.)		
$\ - \ $			()	,) ()	 	
\vdash)		
				(
1			()	($\frac{1}{1}$	 	
			()	() ()	†	
			()	() ()		
	· · · · · · · · · · · · · · · · · · ·	<u> </u>	()	() ()		
			()	() ()		
	-		()	() ()		
			()	() ()		
				(

VALIDATION FINDINGS WORKSHEET Laboratory Control Samples (LCS)

Page: <u>/</u> of <u>/</u>
Reviewer:
2nd Reviewer:

METHOD: GC/MS BNA (EPA SW 846 Method 8270D)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Was a LCS required?

Were the LCS/LCSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?

#	Date	LCS/LCSD ID	Compound	LCS	LCSD %R (Limits)	RPD (Limits)	Associated Samples	Qualifications
		BII0789-BS1	W	132 40+3	()	()	All (lots=2)	Het A
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
ļ				()	()	()		
				()	()	()		
<u></u>				()		()	<u> </u>	
			-	()	()	()		
 				()	()	()		
				()	()	()		
				()	()	()		
 				()	()	()		
<u> </u>				()	()	()		
				()	()	<u> </u>		

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Duwamish AOC4

LDC Report Date:

November 16, 2020

Parameters:

Semivolatiles

Validation Level:

Stage 2B

Laboratory:

Analytical Resources, Inc.

Sample Delivery Group (SDG): 2010192

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
LDW20-IT112	2010192-10	Sediment	06/24/20
LDW20-IT120	2010192-11	Sediment	06/24/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Lower Duwamish Waterway Quality Assurance Project Plan for Remedial Design of Upper Reach: Pre-Design Investigation (May 2020) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Semivolatile Organic Compounds (SVOCs) by Environmental Protection Agency (EPA) SW 846 Method 8270E in Selected Ion Monitoring (SIM) mode

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

A decafluorotriphenylphosphine (DFTPP) tune was performed at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

For compounds where average relative response factors (RRFs) were utilized, percent relative standard deviations (%RSD) were less than or equal to 20.0%.

In the case where the laboratory used a calibration curve to evaluate the compounds, all coefficients of determination (r²) were greater than or equal to 0.990.

Average relative response factors (RRF) for all compounds were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 30.0% for all compounds.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all compounds with the following exceptions:

Date	Compound	%D	Associated Samples	Flag	A or P
10/06/20	Indeno(1,2,3-cd)pyrene Dibenzo(a,h)anthracene	30.4 30.2	All samples in SDG 20I0192	J (all detects) J (all detects)	А

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks with the following exceptions:

Blank ID	Extraction Date	Compound	Concentration	Associated Samples
BII0800-BLK1	09/30/20	Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenzo(a,h)anthracene	1.10 ug/Kg 1.11 ug/Kg 2.07 ug/Kg 2.02 ug/Kg 2.09 ug/Kg 4.91 ug/Kg 4.56 ug/Kg	All samples in SDG 2010192

Sample concentrations were compared to concentrations detected in the laboratory blanks. The sample concentrations were either not detected or were significantly greater than the concentrations found in the associated laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

IX. Laboratory Control Samples/Standard Reference Materials

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

Standard reference materials (SRM) were analyzed as required by the method. The results were within QC limits.

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Compound Quantitation

Raw data were not reviewed for Stage 2B validation.

XIII. Target Compound Identifications

Raw data were not reviewed for Stage 2B validation.

XIV. System Performance

Raw data were not reviewed for Stage 2B validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Due to continuing calibration %D, data were qualified as estimated in two samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable.

Duwamish AOC4 Semivolatiles – Data Qualification Summary - SDG 2010192

Sample	Compound	Flag	A or P	Reason
LDW20-IT112 LDW20-IT120	Indeno(1,2,3-cd)pyrene Dibenzo(a,h)anthracene	J (all detects) J (all detects)	А	Continuing calibration (%D)

Duwamish AOC4 Semivolatiles - Laboratory Blank Data Qualification Summary - SDG 2010192

No Sample Data Qualified in this SDG

Duwamish AOC4
Semivolatiles - Field Blank Data Qualification Summary - SDG 2010192

No Sample Data Qualified in this SDG

SDG # _abora	t: 49590B2b VALIE t: 20I0192 atory: Analytical Resources, Inc. IOD: GC/MS Polynuclear Aromat	S	tage 2B	SS WORKSHEE	R 2nd R	Date: 10/9/20 Page: _/ of _/ eviewer: eviewer:
	amples listed below were reviewe tion findings worksheets.	d for each of the fo	ollowing valid	dation areas. Valida	ation findings are r	noted in attached
	Validation Area			Com	nments	
I.	Sample receipt/Technical holding times	. A				
11.	GC/MS Instrument performance check	A				
III.	Initial calibration/ICV	Aid	R505	20/0.82	10/=3	To
IV.	Continuing calibration	N/	cot=	2070		
V.	Laboratory Blanks	W				
VI.	Field blanks	N	_ :			
VII.	Surrogate spikes					
VIII.	Matrix spike/Matrix spike duplicates	N.	09			
IX.	Laboratory control samples / SRM	AA	105			
X.	Field duplicates	N				
XI.	Internal standards	A				
XII.	Compound quantitation RL/LOQ/LODs	N				
XIII.	Target compound identification	N				
XIV.	System performance	N				
XV.	Overall assessment of data	A				
Note:	A = Acceptable N = Not provided/applicable SW = See worksheet	ND = No compounds R = Rinsate FB = Field blank	s detected	D = Duplicate TB = Trip blank EB = Equipment b	SB=Sourc OTHER: lank	ce blank
	Client ID			Lab ID	Matrix	Date
	LDW20-IT112			2010192-10	Sediment	06/24/20
	LDW20-IT120			2010192-11	Sediment	06/24/20
3						
4						
5		-				
6						
7						
8						
9						
lotes:						
Z	3110800					
		·				

VALIDATION FINDINGS WORKSHEET

METHOD: GC/MS SVOA

WETHOD. GC/WS SVOA				
A. Phenol	CC. Dimethylphthalate	EEE. Bis(2-ethylhexyl)phthalate	GGGG. C30-Hopane	I1. Methyl methanesulfonate
B. Bis (2-chloroethyl) ether	DD. Acenaphthylene	FFF. Di-n-octylphthalate	HHHH. 1-Methylphenanthrene	J1. Ethyl methanesulfonate
C. 2-Chlorophenol	EE. 2,6-Dinitrotoluene	GGG. Benzo(b)fluoranthene	IIII. 1,4-Dioxane	K1. o,o',o"-Triethylphosphorothioate
D. 1,3-Dichlorobenzene	FF. 3-Nitroaniline	HHH. Benzo(k)fluoranthene	JJJJ. Acetophenone	L1. n-Phenylene diamine
E. 1,4-Dichlorobenzene	GG. Acenaphthene	III. Benzo(a)pyrene	KKKK. Atrazine	M1. 1,4-Naphthoquinone
F. 1,2-Dichlorobenzene	HH. 2,4-Dinitrophenol	JJJ. Indeno(1,2,3-cd)pyrene	LLLL. Benzaldehyde	N1. N-Nitro-o-toluidine
G. 2-Methylphenol	II. 4-Nitrophenol	KKK. Dibenz(a,h)anthracene	MMMM. Caprolactam	O1. 1,3,5-Trinitrobenzene
H. 2,2'-Oxybis(1-chloropropane)	JJ. Dibenzofuran	LLL. Benzo(g,h,i)perylene	NNNN. 2,6-Dichlorophenol	P1. Pentachlorobenzene
I. 4-Methylphenol	KK. 2,4-Dinitrotoluene	MMM. Bis(2-Chloroisopropyl)ether	OOOO. 1,2-Diphenylhydrazine	Q1. 4-Aminobiphenyl
J. N-Nitroso-di-n-propylamine	LL. Diethylphthalate	NNN. Aniline	PPPP. 3-Methylphenol	R1. 2-Naphthylamine
K. Hexachloroethane	MM. 4-Chlorophenyl-phenyl ether	OOO. N-Nitrosodimethylamine	QQQQ. 3&4-Methylphenol	S1. Triphenylene
L. Nitrobenzene	NN. Fluorene	PPP. Benzoic Acid	RRRR. 4-Dimethyldibenzothiophene (4MDT)	T1. Octachlorostyrene
M. Isophorone	OO. 4-Nitroaniline	QQQ. Benzyl alcohol	SSSS. 2/3-Dimethyldibenzothiophene (4MDT)	U1. Famphur
N. 2-Nitrophenol	PP. 4,6-Dinitro-2-methylphenol	RRR. Pyridine	TTTT. 1-Methyldibenzothiophene (1MDT)	V1. 1,4-phenylenediamine
O. 2,4-Dimethylphenol	QQ. N-Nitrosodiphenylamine	SSS. Benzidine	UUUU 2,3,4,6-Tetrachlorophenol	W1. Methapyrilene
P. Bis(2-chloroethoxy)methane	RR. 4-Bromophenyl-phenylether	TTT. 1-Methylnaphthalene	VVVV. 1,2,4,5-Tetrachlorobenzene	X1. Pentachloroethane
Q. 2,4-Dichlorophenol	SS. Hexachlorobenzene	UUU.Benzo(b)thiophene	WWWW 2-Picoline	Y1. 3,3'-Dimethylbenzidine
R. 1,2,4-Trichlorobenzene	TT. Pentachlorophenol	VVV.Benzonaphthothiophene	XXXX. 3-Methylcholanthrene	Z1. o-Toluidine
S. Naphthalene	UU. Phenanthrene	WWW.Benzo(e)pyrene	YYYY. a,a-Dimethylphenethylamine	A2. 1-Naphthylamine
T. 4-Chloroaniline	VV. Anthracene	XXX. 2,6-Dimethylnaphthalene	ZZZZ. Hexachloropropene	B2. 4-Aminobiphenyl
U. Hexachlorobutadiene	WW. Carbazole	YYY. 2,3,5-Trimethylnaphthalene	A1. N-Nitrosodiethylamine	C2. 4-Nitroquinoline-1-oxide
V. 4-Chloro-3-methylphenol	XX. Di-n-butylphthalate	ZZZ. Perylene	B1. N-Nitrosodi-n-butylamine	D2. Hexachloropene
W. 2-Methylnaphthalene	YY. Fluoranthene	AAAA. Dibenzothiophene	C1. N-Nitrosomethylethylamine	E2. Bis (2-chloro-1-methylethyl) ether
X. Hexachlorocyclopentadiene	ZZ. Pyrene	BBBB. Benzo(a)fluoranthene	D1. N-Nitrosomorpholine	F2. Bifenthrin
Y. 2,4,6-Trichlorophenol	AAA. Butylbenzylphthalate	CCCC. Benzo(b)fluorene	E1. N-Nitrosopyrrolidine	G2. Cyfluthrin
Z. 2,4,5-Trichlorophenol	BBB. 3,3'-Dichlorobenzidine	DDDD. cis/trans-Decalin	F1. Phenacetin	H2. Cypermethrin
AA. 2-Chloronaphthalene	CCC. Benzo(a)anthracene	EEEE. 1,1'-Biphenyl	G1. 2-Acetylaminofluorene	I2. Permethrin (cis/trans)
BB. 2-Nitroaniline	DDD. Chrysene	FFFF. Retene	H1. Pronamide	J2. 5-Nitro-o-toluidine

VALIDATION FINDINGS WORKSHEET Continuing Calibration

METHOD: GC/MS BNA (EPA SW 846 Method 8270D)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

N N/A Y N N/A Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?

Were percent differences (%D) ≤20 % and relative response factors (RRF) within the method criteria?

#	Date	Standard ID		Finding %D (Limit: <20.0%)	Finding RRF (Limit)	Associated Samples	Qualifications
	16/6/20	Standard ID NT82010047	44	30.4 30.2		All (dets)	VWA
			tkk	30.2		 	//
						†	
			:				
		·····					
							
 							
				<u> </u>			
					<u> </u>	<u> </u>	

VALIDATION FINDINGS WORKSHEET Blanks

Page:_	_/of_/
Reviewer:	- L

METHOD: GC/MS BNA (EPA SW 846 Method 8270D)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Was a method blank analyzed for each matrix?

N N/A Was a method blank analyzed for each concentration preparation level?

Y)N N/A Was a method blank associated with every sample?

Blank extraction date:_____ Blank analysis date:____

V N N/A Was the blank contaminated? If yes, please see qualification below.

Blank extraction date: 98/20 Blank analysis date: 19/4/20 Conc. units: NS/CS AII Associated Samples:

Tiboobalou cumpios. 74						
Compound	Blank ID	Sample Identification				
BI	0800-B	k /				
ecc	1.10					
000 000 549	1.11					
444	2.07					
AHH	2.02					
///	2.09					
W	4.91					
KKK	4.56					

Conc. units:	nc. units: Associated Samples:								
Compound	Blank ID				s	ample Identifica	ition		
			-						

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT:

Common contaminants such as the phthalates and TICs noted above that were detected in samples within ten times the associated method blank concentration were qualified as not detected, "U". Other contaminants within five times the method blank concentration were also qualified as not detected, "U".

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Duwamish AOC4

LDC Report Date: November 16, 2020

Parameters: Polychlorinated Biphenyls

Validation Level: Stage 2B

Laboratory: Analytical Resources, Inc.

Sample Delivery Group (SDG): 2010192

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
LDW20-SS311	2010192-02	Sediment	06/24/20
LDW20-SS313	2010192-03	Sediment	06/24/20
LDW20-SS317	2010192-04	Sediment	06/24/20
LDW20-SS205	2010192-05	Sediment	06/24/20
LDW20-SS209	2010192-06	Sediment	06/24/20
LDW20-SS213	2010192-07	Sediment	06/24/20
LDW20-IT307	2010192-08	Sediment	06/24/20
LDW20-IT303	2010192-09	Sediment	06/24/20
LDW20-IT112	2010192-10	Sediment	06/24/20
LDW20-IT120	2010192-11	Sediment	06/24/20
LDW20-SC136	2010192-12	Sediment	06/24/20
LDW20-SC131	2010192-13	Sediment	06/24/20
LDW20-SC132	2010192-14	Sediment	06/24/20
LDW20-SC141	2010192-15	Sediment	06/24/20
LDW20-SS131	2010192-16	Sediment	06/25/20
LDW20-SS132	2010192-17	Sediment	06/25/20
LDW20-SS420	2010192-18	Sediment	06/26/20
LDW20-SC153B	2010192-22	Sediment	06/26/20
LDW20-SC157A	2010192-23	Sediment	06/26/20
LDW20-SS420MS	20I0192-18MS	Sediment	06/26/20
LDW20-SS420MSD	2010192-18MSD	Sediment	06/26/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Lower Duwamish Waterway Quality Assurance Project Plan for Remedial Design of Upper Reach: Pre-Design Investigation (May 2020) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polychlorinated Biphenyls (PCBs) by Environmental Protection Agency (EPA) SW 846 Method 8082

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0% for all compounds.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all compounds with the following exceptions:

Date	Standard	Column	Compound	%D	Associated Samples	Flag	A or P
09/03/20	SII0059-SCV1	2C	Aroclor-1260	21.5	LDW20-SS311 LDW20-SS313 LDW20-SS317 LDW20-SS205 LDW20-SS209 LDW20-SS213 LDW20-IT112 LDW20-IT120 LDW20-SC136 LDW20-SC131 LDW20-SC131 LDW20-SC141 LDW20-SS131 LDW20-SS132 LDW20-SS132 LDW20-SS132 LDW20-SC153B LDW20-SC157A	J (all detects) UJ (all non-detects)	A

III. Continuing Calibration

Continuing calibration was performed at required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all compounds with the following exceptions:

Date	Standard	Column	Compound	%D	Associated Samples	Flag	A or P
10/09/20	20100847ECD7	1C	Aroclor-1260	26.4	LDW20-SC141 LDW20-SS131 LDW20-SS132 LDW20-SS420 LDW20-SC153B LDW20-SC157A	J (all detects) UJ (all non-detects)	А

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Surrogates/Internal Standards

Surrogates were added to all samples as required by the method. Surrogate recoveries (%R) were not within QC limits for sample LDW20-IT303. No data were qualified for samples analyzed at greater than or equal to 5X dilution.

All internal standard percent recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

VIII. Laboratory Control Samples/Standard Reference Materials

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

Standard reference materials (SRM) were analyzed as required by the method. The results were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Compound Quantitation

The sample results for detected compounds from the two columns were within 40% relative percent difference (RPD) with the following exceptions:

Sample	Compound	RPD	Flag	A or P
LDW20-SS205	Aroclor-1254 Aroclor-1260	41.8 45.5	J (all detects) J (all detects)	А
LDW20-SS213	Aroclor-1260	43.6	J (all detects)	А

Raw data were not reviewed for Stage 2B validation.

XI. Target Compound Identification

Raw data were not reviewed for Stage 2B validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Due to ICV %D, continuing calibration %D, and RPD between two columns, data were qualified as estimated in sixteen samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable.

Duwamish AOC4 Polychlorinated Biphenyls - Data Qualification Summary - SDG 2010192

Sample	Compound	Flag	A or P	Reason
LDW20-SS311 LDW20-SS313 LDW20-SS317 LDW20-SS205 LDW20-SS209 LDW20-SS213 LDW20-IT112 LDW20-IT120 LDW20-SC136 LDW20-SC131 LDW20-SC131 LDW20-SC141 LDW20-SS131 LDW20-SS132 LDW20-SS420 LDW20-SC153B LDW20-SC157A	Aroclor-1260	J (all detects) UJ (all non-detects)	Α	Initial calibration verification (%D)
LDW20-SC141 LDW20-SS131 LDW20-SS132 LDW20-SS420 LDW20-SC153B LDW20-SC157A	Aroclor-1260	J (all detects) UJ (all non-detects)	А	Continuing calibration (%D)
LDW20-SS205	Aroclor-1254 Aroclor-1260	J (all detects) J (all detects)	A	Compound quantitation (RPD between two columns)
LDW20-SS213	Aroclor-1260	J (all detects)	А	Compound quantitation (RPD between two columns)

Duwamish AOC4

Polychlorinated Biphenyls - Laboratory Blank Data Qualification Summary - SDG 2010192

No Sample Data Qualified in this SDG

Duwamish AOC4

Polychlorinated Biphenyls - Field Blank Data Qualification Summary - SDG 2010192

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET LDC #: 49590B3b

SDG #: 2010192

Stage 2B

Reviewer: 2nd Reviewer:

Laboratory: Analytical Resources, Inc.

METHOD: GC Polychlorinated Biphenyls (EPA SW846 Method 8082)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
I.	Sample receipt/Technical holding times	A	
11.	Initial calibration/ICV	A IW	PSO<2070. eò2070 ed≤2070
111.	Continuing calibration	W	COV = 2070
IV.	Laboratory Blanks	A	<i>t</i>
V.	Field blanks	N	
VI.	Surrogate spikes / IS	with	- 70R out for #8. NQ >5x of
VII.	Matrix spike/Matrix spike duplicates	A	,
VIII.	Laboratory control samples JSRM	AA	105
IX.	Field duplicates	N	
X.	Compound quantitation/RL/LOQ/LODs	N	
XI.	Target compound identification	N	
LXIL	Overall assessment of data		

Note:

A = Acceptable

N = Not provided/applicable SW = See worksheet

ND = No compounds detected

R = Rinsate

FB = Field blank

D = Duplicate

TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

Client ID Lab ID Matrix Date 2010192-02 Sediment 06/24/20 LDW20-SS311 2010192-03 Sediment 06/24/20 LDW20-SS313 2010192-04 Sediment LDW20-SS317 06/24/20 LDW20-SS205 2010192-05 Sediment 06/24/20 4 / 2010192-06 LDW20-SS209 Sediment 06/24/20 6 / LDW20-SS213 2010192-07 Sediment 06/24/20 Sediment 2010192-08 06/24/20 LDW20-IT307 2010192-09 LDW20-IT303 Sediment 06/24/20 8 LDW20-IT112 2010192-10 Sediment 06/24/20 10 LDW20-IT120 2010192-11 Sediment 06/24/20 2010192-12 Sediment 06/24/20 11 LDW20-SC136 LDW20-SC131 2010192-13 Sediment 06/24/20 12 13 LDW20-SC132 2010192-14 Sediment 06/24/20 2010192-15 Sediment 06/24/20 14 LDW20-SC141 2010192-16 Sediment 06/25/20 15 LDW20-SS131 06/25/20 16 LDW20-SS132 2010192-17 Sediment LDW20-SS420 2010192-18 Sediment 06/26/20

SDG Labo	#:49590B3b VALIDATION COMPLETENESS #:2010192	S WORKSHEET	F	Date: ///9/70 Page: // of / ewer: # ewer:
18	LDW20-SC153B	2010192-22	Sediment	06/26/20
19	LDW20-SC157A	2010192-23	Sediment	06/26/20
20	LDW20-SS420MS	2010192-18MS	Sediment	06/26/20
21	LDW20-SS420MSD	20I0192-18MSD	Sediment	06/26/20
22				
23				
24				
Votes				
	BK/e07/			

VALIDATION FINDINGS WORKSHEET

METHOD: Pesticides

A. alpha-BHC	K. Endrin	U. Toxaphene	EE. 2,4'-DDT	OO. oxy-Chlordane
B. beta-BHC	L. Endosulfan II	V. Aroclor-1016	FF. Hexachlorobenzene	PP. cis-Nonachlor
C. delta-BHC	M. 4,4'-DDD	W. Aroclor-1221	GG. Chlordane	QQ. trans-Nonachlor
D. gamma-BHC	N. Endosulfan sulfate	X. Aroclor-1232	HH. Chlordane (Technical)	RR. cis-Chlordane
E. Heptachlor	O. 4,4'-DDT	Y. Aroclor-1242	II. p,p'-DDE	SS. trans-Chlordane
F. Aldrin	P. Methoxychlor	Z. Aroclor-1248	JJ. p,p'-DDD	TT. alpha-Endosulphan
G. Heptachlor epoxide	Q. Endrin ketone	AA. Aroclor-1254	KK. p,p'-DDT	UU. beta-Endosulphan
H. Endosulfan I	R. Endrin aldehyde	BB. Aroclor-1260	LL. o,p'-DDT	VV. Endosulphan Sulphate
I. Dieldrin	S. alpha-Chlordane	CC. 2,4'-DDD	MM. o,p'-DDE	WW. Mirex
J. 4,4'-DDE	T. gamma-Chlordane	DD. 2,4'-DDE	NN. o,p'-DDD	

Notes:
Notes:

VALIDATION FINDINGS WORKSHEET Initial Calibration Verification

Page: <u>/of/</u>	
Reviewer:	
2nd Reviewer:	

LDC #: <u>A95908</u> 30

METHOD: ____ GC ___ HPLC

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

What type of initial calibration verification calculation was performed? ___%D or ___%R

AN N/A Was an initial calibration verification standard analyzed after each ICAL for each instrument?

YF NDN/A Did the initial calibration verification standards meet the %D / %R validation criteria of <20.0% / 80-120%?

#	Date	Standard ID <iio 59-501<="" th=""><th>Detector/ Column</th><th>Compound</th><th>%D (Limit ≤ 20.0)</th><th>Associated Samples</th><th>Qualifications</th></iio>	Detector/ Column	Compound	%D (Limit ≤ 20.0)	Associated Samples	Qualifications
	9/3/20	<110059-SCV1	20	BB	ڪ/.5	Associated Samples 1-6 9-12.14-21.MB (Adt5+ND)	1/41/A
	77			•		(dotS+ND)	
		~					
L.							
			·				
 							
<u> </u>							
<u> </u>							
<u> </u>							
<u> </u>							
<u> </u>							
<u> </u>							
<u> </u>							
<u> </u>							
							
-							
 							
 							
	<u></u>				L		

LDC #: 49	49082	6
METHOD:	GC	HPI C

VALIDATION FINDINGS WORKSHEET Continuing Calibration

Page:_	
Reviewer:_	9
2nd Reviewer:_	

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Y N N/A Y N N/A Were continuing calibration standards analyzed at the required frequencies?

Did the continuing calibration standards meet the %D validation criteria of ≤20.0%?

Level IV Only

Were the retention times for all calibrated compounds within their respective acceptance windows?

#	Dațe	Standard ID	Detector/ Column	Compound	%D (Limit)	RT (limit)	Associated Samples	Qualifications
	10/9/20	20/084/2501	10	BB	26.4	()	14-21. (At3+ND)	VINA
	77				, , , ,	()		
				_		()		MBB Z O
						()		
						()		
						()		
Ĺ						()		
						()		
						()		
						()		
						()		
						()		
						()	·	
						()		
	_					()		
<u> </u>						()		
	_					()		
ļ						().		
						()		
						()		
	-					()		
						()		
ļ	-					()		
	-					()		
	İ	l] ()		1

LDC #: 4959aBab

VALIDATION FINDINGS WORKSHEET Compound Quantitation and Reported CRQLs

Page:	/of_	/
eviewer	9	

METHOD: VGC _ HPLC

Level IV/D Only

N N/A/ Were CRQLs adjusted for sample dilutions, dry weight factors, etc.?

Did the reported results for detected target compounds agree within 10.0% of the recalculated results?

Did the relative percent differences of detected compounds between two columns/detectors <40%?

If no, please see findings bellow.

	ii no, piease see iindings bellow.				
#	Compound Name	Sample ID	%RPD Between Two Columns/Detectors Limit (≤ 40%)	Qualifications	
	AA	4	41.8	Slet A	
	#		45.5	/ 1	
	B13	Ь	43.6	₹	

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Duwamish AOC4

LDC Report Date:

November 9, 2020

Parameters:

Metals

Validation Level:

Stage 2B

Laboratory:

Analytical Resources, Inc.

Sample Delivery Group (SDG): 2010192

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
LDW20-IT112	2010192-10	Sediment	06/24/20
LDW20-IT120	2010192-11	Sediment	06/24/20
LDW20-SC153B	2010192-22	Sediment	06/26/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Lower Duwamish Waterway Quality Assurance Project Plan for Remedial Design of Upper Reach: Pre-Design Investigation (May 2020) and a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:

Arsenic by Environmental Protection Agency (EPA) SW 846 Method 6020A Mercury by EPA SW 846 Method 7471B

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met with the following exceptions:

Sample	Analyte	Total Days From Sample Collection Until Analysis	Required Holding Time (in Days) From Sample Collection Until Analysis	Flag	A or P
LDW20-SC153B Mercury		88	28	J (all detects)	Р

II. ICPMS Tune

The mass calibration was within 0.1 AMU and the percent relative standard deviation (%RSD) was less than or equal to 5%.

III. Instrument Calibration

Initial and continuing calibrations were performed as required by the methods.

The initial calibration verification (ICV) and continuing calibration verification (CCV) standards were within QC limits.

IV. ICP Interference Check Sample Analysis

The frequency of interference check sample (ICS) analysis was met. All criteria were within QC limits.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Duplicate Sample Analysis

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

IX. Serial Dilution

Serial dilution was not performed for this SDG.

X. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the methods. Percent recoveries (%R) were within QC limits.

XI. Field Duplicates

No field duplicates were identified in this SDG.

XII. Internal Standards (ICP-MS)

Raw data were not reviewed for Stage 2B validation.

XIII. Sample Result Verification

Raw data were not reviewed for Stage 2B validation.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the methods. No results were rejected in this SDG.

Due to technical holding time, data were qualified as estimated in one sample.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable.

Duwamish AOC4 Metals - Data Qualification Summary - SDG 2010192

Sample	Analyte	Flag	A or P	Reason	
LDW20-SC153B	Mercury	J (all detects)	Р	Technical holding times	

Duwamish AOC4 Metals - Laboratory Blank Data Qualification Summary - SDG 2010192

No Sample Data Qualified in this SDG

Duwamish AOC4
Metals - Field Blank Data Qualification Summary - SDG 2010192

No Sample Data Qualified in this SDG

SDG # _abora METH The sa	t: 49590B4a VALIDATIO t: 2010192 atory: Analytical Resources, Inc. IOD: Metals (EPA SW 846 Method 6020 amples listed below were reviewed for eation findings worksheets.	S A/7471B)	tage 2B	S WORKSHEE tion areas. Validat	R 2nd R	Date: US/7 Page: of of of of other of other contents of other cont		
	Validation Area			Comments				
-:	Sample receipt/Technical holding times	A-SW						
II.	ICP/MS Tune							
111.	Instrument Calibration	A						
IV.	ICP Interference Check Sample (ICS) Analysis	À						
V.	Laboratory Blanks	A						
VI.	Field Blanks	N						
VII.	Matrix Spike/Matrix Spike Duplicates	N						
VIII.	Duplicate sample analysis	N.						
IX.	Serial Dilution	N						
Χ.	Laboratory control samples	A	LES					
XI.	Field Duplicates	\mathcal{N}		,				
XII.	Internal Standard (ICP-MS)	N	notre	rieueb				
XIII.	Sample Result Verification	N						
XIV	Overall Assessment of Data	l A						
lote:	e: A = Acceptable ND = No compounds detected D = Duplicate SB=Source blank N = Not provided/applicable R = Rinsate TB = Trip blank OTHER: SW = See worksheet FB = Field blank EB = Equipment blank							
- (Client ID			Lab ID	Matrix	Date		
1 l	_DW20-IT112			2010192-10	Sediment	06/24/20		
2 L	_DW20-IT120		<u>-</u>	2010192-11	Sediment	06/24/20		
3 l	LDW20-SC153B			2010192-22	Sediment	06/26/20		
4								
5								
6								
7								
8								
9								
10								
11			· · · · · · · · · · · · · · · · · · ·					
12								
lotes:								

VALIDATION FINDINGS WORKSHEET Sample Specific Element Reference

Page 1 of 1 Reviewer:CR

All elements are applicable to each sample as noted below.

Sample ID	Target Analyte List	
1, 2	As	
	3 Hg	
		· · · · · · · · · · · · · · · · · · ·
		·
	Analysis Method	
100		

ICP	
ICP-MS	As
CVAA	Hg

METHOD: Trace Metals (EPA SW 846 Methods 6010/6020/7000)

All samples were properly preserved (water samples to a pH of <2) and analyzed within the required holding time with the following exceptions.

Method:		Mercury by 7471B, HT = 28 days								
			Total Time from							
			Collection to							
Sample ID	Sampling Date	Analysis Date	Analysis (Days)	Qualifier	Det/ND					
	3 6/26/202	9/22/2020	88	J/R/P	Det					

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Duwamish AOC4

LDC Report Date:

November 9, 2020

Parameters:

Wet Chemistry

Validation Level:

Stage 2B

Laboratory:

Analytical Resources, Inc.

Sample Delivery Group (SDG): 2010192

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
LDW20-SS311	2010192-02	Sediment	06/24/20
LDW20-SS313	2010192-03	Sediment	06/24/20
LDW20-SS317	2010192-04	Sediment	06/24/20
LDW20-SS205	2010192-05	Sediment	06/24/20
LDW20-SS209	2010192-06	Sediment	06/24/20
LDW20-SS213	2010192-07	Sediment	06/24/20
LDW20-IT307	2010192-08	Sediment	06/24/20
LDW20-IT303	2010192-09	Sediment	06/24/20
LDW20-IT112	2010192-10	Sediment	06/24/20
LDW20-IT120	2010192-11	Sediment	06/24/20
LDW20-SC136	2010192-12	Sediment	06/24/20
LDW20-SC131	2010192-13	Sediment	06/24/20
LDW20-SC132	2010192-14	Sediment	06/24/20
LDW20-SC141	2010192-15	Sediment	06/24/20
LDW20-SS131	2010192-16	Sediment	06/25/20
LDW20-SS132	2010192-17	Sediment	06/25/20
LDW20-SS420	2010192-18	Sediment	06/26/20
LDW20-SS380	2010192-19	Sediment	06/26/20
LDW20-SC153B	2010192-22	Sediment	06/26/20
LDW20-SC157A	2010192-23	Sediment	06/26/20
LDW20-SS311MS	2010192-02MS	Sediment	06/24/20
LDW20-SS311DUP	2010192-02DUP	Sediment	06/24/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Lower Duwamish Waterway Quality Assurance Project Plan for Remedial Design of Upper Reach: Pre-Design Investigation (May 2020) and a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:

Total Organic Carbon by Environmental Protection Agency (EPA) SW 846 Method 9060A

Total Solids by Standard Method 2540G

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. Initial Calibration

All criteria for the initial calibration of each method were met.

III. Continuing Calibration

Continuing calibration frequency and analysis criteria were met for each method when applicable.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks with the following exceptions:

Blank ID	Analyte	Maximum Concentration	Associated Samples
ICB/CCB	Total organic carbon	0.02%	All samples in SDG 20I0192

Data qualification by the laboratory blanks was based on the maximum contaminant concentration in the laboratory blanks in the analysis of each analyte. The sample concentrations were either not detected or were significantly greater than the concentrations found in the associated laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Analyte	%R (Limits)	Flag	A or P
LDW20-SS311MS (LDW20-SS311 LDW20-SS311DUP)	Total organic carbon	126 (75-125)	J (all detects)	А

VII. Duplicate Sample Analysis

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits.

VIII. Laboratory Control Samples/Standard Reference Materials

Laboratory control samples (LCS) were analyzed as required by the methods. Percent recoveries (%R) were within QC limits.

Standard reference materials (SRM) were analyzed as required by the methods. The results were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Sample Result Verification

Raw data were not reviewed for Stage 2B validation.

XI. Overall Assessment of Data

The analysis was conducted within all specifications of the methods. No results were rejected in this SDG.

Due to MS %R, data were qualified as estimated in two samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable.

Duwamish AOC4 Wet Chemistry - Data Qualification Summary - SDG 2010192

Sample	Analyte	Flag	A or P	Reason
LDW20-SS311 LDW20-SS311DUP	Total organic carbon	J (all detects)	Α	Matrix spike (%R)

Duwamish AOC4 Wet Chemistry - Laboratory Blank Data Qualification Summary - SDG 2010192

No Sample Data Qualified in this SDG

Duwamish AOC4
Wet Chemistry - Field Blank Data Qualification Summary - SDG 2010192

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

SDG #: 2010192

LDC #: 49590B6

Stage 2B

Laboratory: Analytical Resources, Inc.

Reviewer: 2nd Reviewer:

METHOD: (Analyte) TOC (EPA SW846 9060A), Total Solids (SM 2540G)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
1.	Sample receipt/Technical holding times	AISM	A
	Initial calibration	A	
111.	Calibration verification	A	
IV	Laboratory Blanks	SW	
V	Field blanks	\mathcal{N}	
VI.	Matrix Spike/Matrix Spike Duplicates	SW	
VII.	Duplicate sample analysis	A	
VIII.	Laboratory control samples	A	US, SR(V)
IX.	Field duplicates	\mathcal{N}	•
X.	Sample result verification	N	
ΧI	Overall assessment of data	18	

Note:

A = Acceptable

N = Not provided/applicable SW = See worksheet

ND = No compounds detected

R = Rinsate

FB = Field blank

D = Duplicate

TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

Client ID Lab ID Matrix Date LDW20-SS311 2010192-02 Sediment 06/24/20 2 LDW20-SS313 2010192-03 Sediment 06/24/20 2010192-04 06/24/20 LDW20-SS317 Sediment 4 LDW20-SS205 2010192-05 Sediment 06/24/20 5 LDW20-SS209 2010192-06 Sediment 06/24/20 LDW20-SS213 2010192-07 Sediment 06/24/20 6 7 LDW20-IT307 2010192-08 Sediment 06/24/20 2010192-09 06/24/20 8 LDW20-IT303 Sediment 2010192-10 9 LDW20-IT112 Sediment 06/24/20 10 LDW20-IT120 2010192-11 Sediment 06/24/20 2010192-12 11 LDW20-SC136 Sediment 06/24/20 12 LDW20-SC131 2010192-13 Sediment 06/24/20 13 LDW20-SC132 2010192-14 Sediment 06/24/20 06/24/20 LDW20-SC141 2010192-15 Sediment 14 15 2010192-16 LDW20-SS131 Sediment 06/25/20 16 LDW20-SS132 2010192-17 Sediment 06/25/20 LDW20-SS420 2010192-18 Sediment 06/26/20

LDC #: 49590B6	VALIDATION COMPLETENESS WORKSHEET
SDG #: 2010192	Stage 2B

SDG #: 2010192 Stage
Laboratory: Analytical Resources, Inc.

Date: WSZO
Page: 2 of Z
Reviewer: 2

METHOD: (Analyte) TOC (EPA SW846 9060A), Total Solids (SM 2540G)

18	LDW20-SS380	2010192-19	Sediment	06/26/20
19	LDW20-SC153B	2010192-22	Sediment	06/26/20
20	LDW20-SC157A	2010192-23	Sediment	06/26/20
21	LDW20-SS311MS	2010192-02MS	Sediment	06/24/20
22	LDW20-SS311DUP	2010192-02DUP	Sediment	06/24/20
23				
24				
25				

MOTE2.		 		 	 	 	 	 	
	 	 		 	 	 	 		

LDC #: 49590B6

VALIDATION FINDINGS WORKSHEET Sample Specific Element Reference

Page 1 of 1 Reviewer:CR

All elements are applicable to each sample as noted below.

Sample ID	Target Analyte List
1 to 20	Total solids, TOC
QC:	
	21 TOC
	22 Total solids, TOC
,	

LDC#: 49590B6

VALIDATION FINDINGS WORKSHEET <u>Laboratory Blank Contamination (PB/ICB/CCB)</u>

Page 1 of 1 Reviewer:CR

METHOD: Inorganics

Soil preparation factor applied (if applicable):

Sample Concentration, unless otherwise noted: %

Associated Samples: All

					·	 Sam	ole Identific	ation		
Analyte	PB (units)	Maximum ICB/CCB (%)	Action Level	No qual						
TOC		0.02	0.02		1					
									/	

Comments: The listed analyte concentration is the highest ICB or CCB detected in the analysis. The action level, when applicable, is establised

METHOD: Inorganics

MS analysis was performed by the laboratory. All MS percent recoveries (%R) were within the acceptable limits with the following exceptions.

MS ID	Matrix	Analyte	MS %R	%R Limit	Assocaited Samples	Qualification	Det/ND
21	s	TOC	126	75-125	72,1	Jdet/A	Det
)		
		 					
			 				
			<u> </u>				
				,			

Comments:

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Duwamish AOC4

LDC Report Date: November 11, 2020

Parameters: Polychlorinated Dioxins/Dibenzofurans

Validation Level: Stage 2B

Laboratory: Analytical Resources, Inc.

Sample Delivery Group (SDG): 2010192

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
LDW20-SS302	2010192-01	Sediment	06/24/20
LDW20-SS311	2010192-02	Sediment	06/24/20
LDW20-IT307	2010192-08	Sediment	06/24/20
LDW20-IT303	2010192-09	Sediment	06/24/20
LDW20-SS268	2010192-20	Sediment	06/26/20
LDW20-SS236	2010192-21	Sediment	06/26/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Lower Duwamish Waterway Quality Assurance Project Plan for Remedial Design of Upper Reach: Pre-Design Investigation (May 2020) and a modified outline of the USEPA National Functional Guidelines (NFG) for High Resolution Superfund Methods Data Review (April 2016). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polychlorinated Dioxins/Dibenzofurans by Environmental Protection Agency (EPA) Method 1613B

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered not detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. HRGC/HRMS instrument Performance Check

Instrument performance was checked at the required frequency.

Retention time windows were established for all homologues. The chromatographic resolution between 2,3,7,8-TCDD and peaks representing any other unlabeled TCDD isomer was less than or equal to 25%.

The static resolving power was at least 10,000 (10% valley definition).

III. Initial Calibration and Initial Calibration Verification

A five point initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0% for unlabeled compounds and less than or equal to 35.0% for labeled compounds.

The ion abundance ratios for all PCDDs and PCDFs were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were within the QC limits for unlabeled compounds and labeled compounds.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

All of the continuing calibration results were within the QC limits for unlabeled compounds and labeled compounds with the following exceptions:

Date	Compound	Concentration (Limits)	Associated Samples	Flag	A or P
10/16/20	1,2,3,4,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF	59.7 ng/mL (45-56) 57.9 ng/mL (45-56) 59.9 ng/mL (45-55) 60.1 ng/mL (43-58)	LDW20-SS302 LDW20-SS311 LDW20-IT307	J (all detects) UJ (all non-detects)	Р
10/20/20	1,2,3,4,6,7,8-HpCDF	58.2 ng/mL (45-55)	LDW20-SS236	J (all detects)	Р
10/17/20	1,2,3,4,7,8-HxCDF 1,2,3,4,6,7,8-HpCDF	57.2 ng/mL (45-56) 58.0 ng/mL (45-55)	LDW20-IT303 LDW20-SS268	J (all detects) J (all detects)	Р

The ion abundance ratios for all PCDDs and PCDFs were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks with the following exceptions:

Blank ID	Extraction Date	Compound	Concentration	Associated Samples
BIJ0143-BLK1	10/08/20	OCDD	0.486 ng/Kg	All samples in SDG 2010192

Sample concentrations were compared to concentrations detected in the laboratory blanks. The sample concentrations were either not detected or were significantly greater than the concentrations found in the associated laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples/Standard Reference Materials

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

Standard reference materials (SRM) were analyzed as required by the method. The results were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Labeled Compounds

All percent recoveries (%R) for labeled compounds used to quantitate target compounds were within QC limits.

XI. Compound Quantitation

All compound quantitations were within validation criteria with the following exceptions:

Sample	Compound	Flag	A or P
All samples in SDG 20I0192	All compounds reported as estimated maximum possible concentration (EMPC) and greater than the reporting limit.	J (all detects)	А
All samples in SDG 2010192	All compounds reported as estimated maximum possible concentration (EMPC) and less than the reporting limit.	U (all non-detects)	А

Sample	Compound	Finding	Criteria	Flag	A or P
LDW20-SS302 LDW20-IT303	OCDD	Sample result exceeded calibration range.	Reported result should be within calibration range.	J (all detects)	Р

Raw data were not reviewed for Stage 2B validation.

XII. Target Compound Identifications

Raw data were not reviewed for Stage 2B validation.

XIII. System Performance

Raw data were not reviewed for Stage 2B validation.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Due to continuing calibration concentration, compounds reported as EMPC, and results exceeding calibration range, data were qualified as estimated in six samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable.

Duwamish AOC4 Polychlorinated Dioxins/Dibenzofurans - Data Qualification Summary - SDG 2010192

Sample	Compound	Flag	A or P	Reason
LDW20-SS302 LDW20-SS311 LDW20-IT307	1,2,3,4,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF	J (all detects) UJ (all non-detects)	Р	Continuing calibration (concentration)
LDW20-SS236	1,2,3,4,6,7,8-HpCDF	J (all detects)	Р	Continuing calibration (concentration)
LDW20-IT303 LDW20-SS268	1,2,3,4,7,8-HxCDF 1,2,3,4,6,7,8-HpCDF	J (all detects) J (all detects)	Р	Continuing calibration (concentration)
LDW20-SS302 LDW20-SS311 LDW20-IT307 LDW20-IT303 LDW20-SS268 LDW20-SS236	All compounds reported as estimated maximum possible concentration (EMPC) and greater than the reporting limit.	J (all detects)	А	Compound quantitation (EMPC)
LDW20-SS302 LDW20-SS311 LDW20-IT307 LDW20-IT303 LDW20-SS268 LDW20-SS236	All compounds reported as estimated maximum possible concentration (EMPC) and less than the reporting limit.	U (all non-detects)	А	Compound quantitation (EMPC)
LDW20-SS302 LDW20-IT303	OCDD	J (all detects) J (all detects)	Р	Compound quantitation (exceeded range)

Duwamish AOC4

Polychlorinated Dioxins/Dibenzofurans - Laboratory Blank Data Qualification Summary - SDG 2010192

No Sample Data Qualified in this SDG

Duwamish AOC4

Polychlorinated Dioxins/Dibenzofurans - Field Blank Data Qualification Summary - SDG 2010192

No Sample Data Qualified in this SDG

VALIDATION FINDINGS WORKSHEET

METHOD: HRGC/HRMS Dioxins/Dibenzofurans

A. 2,3,7,8-TCDD	F. 1,2,3,4,6,7,8-HpCDD	K. 1,2,3,4,7,8-HxCDF	P. 1,2,3,4,7,8,9-HpCDF	U. Total HpCDD
B. 1,2,3,7,8-PeCDD	G. OCDD	L. 1,2,3,6,7,8-HxCDF	Q. OCDF	V. Total TCDF
C. 1,2,3,4,7,8-HxCDD	H. 2,3,7,8-TCDF	M. 2,3,4,6,7,8-HxCDF	R. Total TCDD	W. Total PeCDF
D. 1,2,3,6,7,8-HxCDD	I. 1,2,3,7,8-PeCDF	N. 1,2,3,7,8,9-HxCDF	S. Total PeCDD	X. Total HxCDF
E. 1,2,3,7,8,9-HxCDD	J. 2,3,4,7,8-PeCDF	O. 1,2,3,4,6,7,8-HpCDF	T. Total HxCDD	Y. Total HpCDF

Notes:				

SDG	OC #: 49590B21 VALIDATION COMPLETENESS WORKSHEET OG #: 2010192 Stage 2B aboratory: Analytical Resources, Inc.					Date: ////////////////////////////////////
MET	HOD: HRGC/HRMS Polychlorinated Dioxi	ins/Dibenzo	ofurans (EPA	Method 1613B)	2nd R	deviewer: X
	samples listed below were reviewed for ea ation findings worksheets.	ch of the fo	ollowing valida	ation areas. Validatior	n findings are r	noted in attached
	Validation Area			Comme	ents	
1.	Sample receipt/Technical holding times	A				
II.	HRGC/HRMS Instrument performance check	A				
111.	Initial calibration/ICV	AA	ROY	20/3570.	* IeV=	Relinit
IV.	Continuing calibration	W	COYE	20/257o.		
V.	Laboratory Blanks	W				
VI.	Field blanks	N				
VII.	Matrix spike/Matrix spike duplicates	N	09			
VIII	Laboratory control samples / RM	AA	LC3			
IX.	Field duplicates	N	L			
Χ.	Internal standards	A				
XI.	Compound quantitation RL/LOQ/LODs	₹N				
XII.	Target compound identification	N		·		
XIII.	System performance	N				
XIV.	Overall assessment of data					
Note:	N = Not provided/applicable R = Rin	o compounds sate eld blank	s detected	D = Duplicate TB = Trip blank EB = Equipment blank	SB=Sourc	ce blank
	Client ID			Lab ID	Matrix	Date
1	LDW20-SS302			2010192-01	Sediment	06/24/20
2	LDW20-SS311			2010192-02	Sediment	06/24/20
3	LDW20-IT307			2010192-08	Sediment	06/24/20
4	LDW20-IT303			2010192-09	Sediment	06/24/20
5	LDW20-SS268			2010192-20	Sediment	06/26/20
6	LDW20-SS236			2010192-21	Sediment	06/26/20
7						
8						
9						
10						
Notes:						
						

VALIDATION FINDINGS WORKSHEET Continuing Calibration

Page:	_/_of	1
Reviewer:	9	

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA Method 1613B)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

(Y) N N/A Was a continuing calibration performed at the beginning of each 12 hour period?

Were all concentrations within method QC limits for unlabeled and labeled compounds? 1√2 N/A Y N N/A

Did all continuing calibration standards meet the Ion Abundance Ratio criteria?

		Did all continuing calibrat	T	T = = = = = = = = = = = = = = = = = = =			
#	Date	Standard ID	Compound	conc (ng/mL) Finding %D	Finding Ion Abundance Ratio	Associated Samples	Qualifications
	10/16/20	20/01609A	K	39.7 (45-56 57.9 V		1-3.MB	VW/P
			\sim	57.9 V		1-3.MB (Set=+ND)	/ 1 '
			0	59.9 (45-55) 60.1 (43-58)			
			P	60. (43-58)			d
<u></u>	10/20/20	20/02002	0	58.2 (45-55)		#=5 6. (dets)	VW/P
	' /						/ /
<u> </u>	, ,			- (1: 1)			
 	19/17/20	2010/623	K O	57.2 (45-56) 58.0 (45-55		4-5 (doto)	JUH/P
 	/		# <i>0</i>	58.0 (45-55			/ V'
 			P	57.7 (43-58			
<u> </u>					<u> </u>	<u> </u>	
 							
 							
 							
-	1						
 							
	1					L	

VALIDATION FINDINGS WOR/UHEET Blanks

Page: 1 of 1 Reviewer: PG

METHOD: HRGC/HRMS Dioxins (EPA Method 1613B)

Blank extraction date: 10/8/20 Blank analysis date: 10/16/20

Conc. units: ng/kg Associated samples: All qual U

Contor animor <u>rigi</u>	7										
Compound	Blank ID		Sample Identification								
	BIJ0143-BLK1	5X									
G	0.486	2.43									
				_							
								77.00			
				I							
			· -								

LDC #: 4959013-

VALIDATION FINDINGS WORKSHEET <u>Compound Quantitation and Reported RLs</u>

Page:	/_of/_
Reviewer:	PG.

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA Method 1613B)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Υ	N	N/A)
Y	N	N/A

Were the correct labeled compound, quantitation ions and relative response factors (RRF) used to quantitate the compound? Compound quantitation and RLs were adjusted to reflect all sample dilutions and dry weight factors (if necessary).

#	Date	Sample ID	Finding	Associated Samples	Qualifications
		All	All compounds reported as estimated maximum		Jdets/A
			possible concentration (EMPC) > RL		
		·			
		<i>₽1</i> /	All compounds reported as estimated maximum		U/A
			possible concentration (EMPC) < RL		
ļ					
			All compounds flagged "X" due to chlorinated		باdets/A —
			diphenyl-either interference		
		1,4	= = calib cange		Votes/P
			/		

Comments:	See sample calculation verification worksheet for recalculations
-	

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Duwamish AOC4

LDC Report Date:

November 11, 2020

Parameters:

Semivolatiles

Validation Level:

Stage 2B

Laboratory:

Analytical Resources, Inc.

Sample Delivery Group (SDG): 2010211

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
LDW20-SC149	2010211-01	Sediment	06/25/20
LDW20-SS307	2010211-19	Sediment	06/29/20
LDW20-SC149MS	20I0211-01MS	Sediment	06/25/20
LDW20-SC149MSD	20I0211-01MSD	Sediment	06/25/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Lower Duwamish Waterway Quality Assurance Project Plan for Remedial Design of Upper Reach: Pre-Design Investigation (May 2020) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Semivolatile Organic Compounds (SVOCs) by Environmental Protection Agency (EPA) SW 846 Method 8270E

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

A decafluorotriphenylphosphine (DFTPP) tune was performed at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0% for all compounds.

Average relative response factors (RRF) for all compounds were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 30.0% for all compounds.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all compounds.

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Laboratory Control Samples/Standard Reference Materials

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

Standard reference materials (SRM) were analyzed as required by the method. The results were within QC limits.

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Compound Quantitation

Raw data were not reviewed for Stage 2B validation.

XIII. Target Compound Identifications

Raw data were not reviewed for Stage 2B validation.

XIV. System Performance

Raw data were not reviewed for Stage 2B validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

The quality control criteria reviewed were met and are considered acceptable.

Duwamish AOC4
Semivolatiles - Data Qualification Summary - SDG 2010211

No Sample Data Qualified in this SDG

Duwamish AOC4
Semivolatiles - Laboratory Blank Data Qualification Summary - SDG 2010211

No Sample Data Qualified in this SDG

Duwamish AOC4
Semivolatiles - Field Blank Data Qualification Summary - SDG 2010211

No Sample Data Qualified in this SDG

SDG	#: <u>49590C2a</u> VALIDATIC #: <u>20I0211</u> ratory: <u>Analytical Resources, Inc.</u>		LETENESS tage 2B	S WORKSHEET	R	Date: ///9/z Page: // of // eviewer: //			
METI	ETHOD: GC/MS Semivolatiles (EPA SW 846 Method 8270E)								
	amples listed below were reviewed for eation findings worksheets.	ach of the fo	ollowing valida	tion areas. Validati	on findings are n	oted in attached			
	Validation Area	I		Comr	nents				
ı.	Sample receipt/Technical holding times	A							
II.	GC/MS Instrument performance check	A							
III.	Initial calibration/ICV	AA	R50=	20%.	101=30	<i>7.</i>			
IV.	Continuing calibration	\bigcirc	CEV =	20/0.	/				
V.	Laboratory Blanks	A	•	7					
VI.	Field blanks	N							
VII.	Surrogate spikes	A							
VIII.	Matrix spike/Matrix spike duplicates	A							
IX.	Laboratory control samples /SRM	A/A	105						
Χ.	Field duplicates	1/1/							
XI.	Internal standards	A	-						
XII.	Compound quantitation RL/LOQ/LODs	N							
XIII.	Target compound identification	N							
XIV.		N							
XV.	Overall assessment of data	A							
Note:	A = Acceptable ND = N N = Not provided/applicable R = Ri	No compounds nsate Field blank	detected	D = Duplicate TB = Trip blank EB = Equipment bla	SB=Source OTHER: nk	e blank			
	Client ID			Lab ID	Matrix	Date			
1 /	LDW20-SC149			2010211-01	Sediment	06/25/20			
22	LDW20-SS307		(A)	2010211-19	Sediment	06/29/20			
3	LDW20-SC149MS			2010211-01MS	Sediment	06/25/20			
4	LDW20-SC149MSD			2010211-01MSD	Sediment	06/25/20			
5									
6									
7									
8									
9									
lotes:	2				TT				
	BIJOalb				 				

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Duwamish AOC4

LDC Report Date: November 16, 2020

Parameters: Polychlorinated Biphenyls

Validation Level: Stage 4

Laboratory: Analytical Resources, Inc.

Sample Delivery Group (SDG): 2010211

	Laboratory Sample	B. a. Anim	Collection
Sample Identification	Identification	Matrix	Date
LDW20-SC149	2010211-01	Sediment	06/25/20
LDW20-SC126	2010211-02	Sediment	06/25/20
LDW20-SC138	2010211-03	Sediment	06/25/20
LDW20-SC201B	2010211-04	Sediment	06/25/20
LDW20-IT300	2010211-05	Sediment	06/25/20
LDW20-SC111	2010211-06	Sediment	06/25/20
LDW20-SC108	2010211-07	Sediment	06/25/20
LDW20-SC104	2010211-08	Sediment	06/25/20
LDW20-SC103	2010211-09	Sediment	06/25/20
LDW20-SC100	2010211-10	Sediment	06/25/20
LDW20-SC114	2010211-11	Sediment	06/25/20
LDW20-SC115	2010211-12	Sediment	06/25/20
LDW20-SC118	2010211-13	Sediment	06/25/20
LDW20-SC119	2010211-14	Sediment	06/25/20
LDW20-SC122	2010211-15	Sediment	06/25/20
LDW20-SC129	2010211-16	Sediment	06/25/20
LDW20-SS300	2010211-17	Sediment	06/29/20
LDW20-SS305	2010211-18	Sediment	06/29/20
LDW20-SS307	2010211-19	Sediment	06/29/20
LDW20-SS315	2010211-20	Sediment	06/29/20
LDW20-SC149MS	2010211-01MS	Sediment	06/25/20
LDW20-SC149MSD	20I0211-01MSD	Sediment	06/25/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Lower Duwamish Waterway Quality Assurance Project Plan for Remedial Design of Upper Reach: Pre-Design Investigation (May 2020) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polychlorinated Biphenyls (PCBs) by Environmental Protection Agency (EPA) SW 846 Method 8082

All sample results were subjected to Stage 4 data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0% for all compounds.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all compounds.

III. Continuing Calibration

Continuing calibration was performed at required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all compounds with the following exceptions:

Date	Standard	Column	Compound	%D	Associated Samples	Affected Compound	Flag	A or P
10/10/20	20100954ECD7	2C	Aroclor-1260	20.8	LDW20-SC114 LDW20-SC115 LDW20-SC118 LDW20-SC119 LDW20-SC122 LDW20-SC129 LDW20-SS300 LDW20-SS305 LDW20-SS307 LDW20-SS315	Aroclor-1248 Aroclor-1260	J (all detects) J (all detects)	A

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Surrogates/Internal Standards

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

All internal standard percent recoveries (%R) were within QC limits with the following exceptions:

Sample	Internal Standards	%R (Limits)	Affected Compound	Flag	A or P
LDW20-SC138	Hexabromobiphenyl	48 (50-200)	Aroclor-1260	J (all detects)	Α

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Compound	MS (%R) (Limits)	MSD (%R) (Limits)	Flag	A or P
LDW20-SC149MS/MSD (LDW20-SC149)	Aroclor-1260	269 (58-120)	-	J (all detects)	Α

Relative percent differences (RPD) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Compound	RPD (Limits)	Flag	A or P
LDW20-SC149MS/MSD (LDW20-SC149)	Aroclor-1260	69.5 (≤35)	J (all detects)	А

VIII. Laboratory Control Samples/Standard Reference Materials

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

Standard reference materials (SRM) were analyzed as required by the method. The results were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Compound Quantitation

All compound quantitations met validation criteria.

XI. Target Compound Identification

All target compound identifications met validation criteria.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Due to continuing calibration %D, internal standard %R, and MS/MSD %R and RPD, data were qualified as estimated in twelve samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable.

Duwamish AOC4 Polychlorinated Biphenyls - Data Qualification Summary - SDG 2010211

Sample	Compound	Flag	A or P	Reason
LDW20-SC114 LDW20-SC115 LDW20-SC118 LDW20-SC119 LDW20-SC122 LDW20-SC129 LDW20-SS300 LDW20-SS305 LDW20-SS307 LDW20-SS315	Aroclor-1248 Aroclor-1260	J (all detects) J (all detects)	A	Continuing calibration (%D)
LDW20-SC138	Aroclor-1260	J (all detects)	Α	Internal standards (%R)
LDW20-SC149	Aroclor-1260	J (all detects)	Α	Matrix spike/Matrix spike duplicate (%R)
LDW20-SC149	Aroclor-1260	J (all detects)	А	Matrix spike/Matrix spike duplicate (RPD)

Duwamish AOC4

Polychlorinated Biphenyls - Laboratory Blank Data Qualification Summary - SDG 2010211

No Sample Data Qualified in this SDG

Duwamish AOC4

Polychlorinated Biphenyls - Field Blank Data Qualification Summary - SDG 2010211

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET LDC #: 49590C3b

Stage 4

Laboratory: Analytical Resources, Inc.

SDG #: 2010211

Reviewer: 2nd Reviewer:

METHOD: GC Polychlorinated Biphenyls (EPA SW846 Method 8082)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments	
I.	Sample receipt/Technical holding times	A		
II.	Initial calibration/ICV	AA	R5052070. PN = 2070	/
III.	Continuing calibration	M	act=2070	
IV.	Laboratory Blanks	A		N
V.	Field blanks	N.		1
VI.	Surrogate spikes /- FS	AW		
VII.	Matrix spike/Matrix spike duplicates	M		
VIII.	Laboratory control samples / SPM	AA	205/0	
IX.	Field duplicates	N	,	
X.	Compound quantitation/RL/LOQ/LODs	A		
XI.	Target compound identification	A		
XII	Overall assessment of data	A		

Note:

A = Acceptable

N = Not provided/applicable SW = See worksheet

FB = Field blank

ND = No compounds detected

R = Rinsate

D = Duplicate

TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	LDW20-SC149	2010211-01	Sediment	06/25/20
2	LDW20-SC126	2010211-02	Sediment	06/25/20
3 N	LDW20-SC138	2010211-03	Sediment	06/25/20
4	LDW20-SC201B	2010211-04	Sediment	06/25/20
5	LDW20-IT300	2010211-05	Sediment	06/25/20
6	LDW20-SC111	2010211-06	Sediment	06/25/20
7	LDW20-SC108	2010211-07	Sediment	06/25/20
8	LDW20-SC104	2010211-08	Sediment	06/25/20
9	LDW20-SC103	2010211-09	Sediment	06/25/20
10	LDW20-SC100	2010211-10	Sediment	06/25/20
11	LDW20-SC114	2010211-11	Sediment	06/25/20
12	LDW20-SC115	2010211-12	Sediment	06/25/20
13	LDW20-SC118	2010211-13	Sediment	06/25/20
14	LDW20-SC119	2010211-14	Sediment	06/25/20
15	LDW20-SC122	2010211-15	Sediment	06/25/20
16	LDW20-SC129	2010211-16	Sediment	06/25/20
17	LDW20-SS300	2010211-17	Sediment	06/29/20

SDG Labo	#:49590C3b i #:_20l0211 bratory: <u>Analytical Resour</u> T HOD: GC Polychlorinate	VALIDATION COMPLET Stage rces, Inc. ad Biphenyls (EPA SW846 Method	e 4	F	Date: ///co/2 Page: 2 of 2 Reviewer: 1 Reviewer: 1
18	LDW20-SS305		2010211-18	Sediment	06/29/20
19_	LDW20-SS307		2010211-19	Sediment	06/29/20
20	LDW20-SS315		2010211-20	Sediment	06/29/20
21	LDW20-SC149MS		2010211-01MS	Sediment	06/25/20
22	LDW20-SC149MSD		20I0211-01MSD	Sediment	06/25/20
23					
24					
25					
Votes	:				

VALIDATION FINDINGS CHECKLIST

Page: /of A

Method: VGC HPLC

Method: <u>//</u> GCHPLC	_			
Validation Area	Yes	No	NA	Findings/Comments
I. Technical holding times				
Were all technical holding times met?	/			
Was cooler temperature criteria met?	/	<u> </u>		
Ila. Initial calibration				
Did the laboratory perform a 5 point calibration prior to sample analysis?	_			
Were all percent relative standard deviations (%RSD) ≤ 20%?				
Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit acceptance criteria of ≥0.990?				
Were the RT windows properly established?				
Ilb. Initial calibration verification				
Was an initial calibration verification standard analyzed after each initial calibration for each instrument?	/			
Were all percent differences (%D) ≤ 20%?				
III. Continuing calibration				
Was a continuing calibration analyzed daily?				
Were all percent differences (%D) < 20%?				
Were all the retention times within the acceptance windows?				
IV. Laboratory Blanks				
Was a laboratory blank associated with every sample in this SDG?	_			
Was a laboratory blank analyzed for each matrix and concentration?				
Was there contamination in the laboratory blanks?				
V. Field Blanks		_		
Were field blanks identified in this SDG?				
Were target compounds detected in the field blanks?				
VI. Surrogate spikes				
Were all surrogate percent recovery (%R) within the QC limits?				
If the percent recovery (%R) of one or more surrogates was outside QC limits, was a reanalysis performed to confirm %R?				
If any %R was less than 10 percent, was a reanalysis performed to confirm %R?				
VII. Matrix spike/Matrix spike duplicates				
Were matrix spike (MS) and matrix spike duplicate (MSD) analyzed in this SDG?				
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?				
VIII. Laboratory control samples				
Was an LCS analyzed per analytical or extraction batch?				
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?				

VALIDATION FINDINGS CHECKLIST

Page: <u></u>

Reviewer:

—

Validation Area	Yes	No	NA	Findings/Comments
IX. Field duplicates				
Were field duplicate pairs identified in this SDG?				
Were target compounds detected in the field duplicates?				
X. Compound quantitation				
Did the laboratory LOQs/RLs meet the QAPP LOQs/RLs?				
Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?				
XI. Target compound identification				
Were the retention times of reported detects within the RT windows?				
XIII. Overall assessment of data	/			
Overall assessment of data was found to be acceptable.				

LDC #: 4959000

VALIDATION FINDINGS WORKSHEET Continuing Calibration

Page: / of / Reviewer: 9

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Were continuing calibration standards analyzed at the required frequencies?

Y N/A Did the continuing calibration standards meet the %D validation criteria of <20.0%?

Level IV Only

Were the retention times for all calibrated compounds within their respective acceptance windows?

#	Date	Standard ID	Detector/ Column	Compound	%D (Limit)	RT (limit)	Associated Samples	Qualifications
	10/0/20	20100 954ECDT	20	Araclar-1760	20.8	(11-20 (Sets)	J/W/A
	77					()	18
						()	Bual Aradox-1=
<u> </u>						()	1-1260
						()	
ļ						()	
						()	
 					· · · · · · · · · · · · · · · · · · ·	()	
<u> </u>						()	
						()	
							<u> </u>	
							<u> </u>	
-							<u> </u>	
							<u> </u>	
						()	
						()	
						()	
						()	
						()	
					w	()	
						()	
						()	
 			·			()	
					_	()	

LDC #: <u>19590C</u> -

VALIDATION FINDINGS WORKSHEET Internal Standards

Page:_	<u>of</u>
Reviewer:_	4
2nd Reviewer:	

METHOD: GC

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Were all internal standard area counts within -50 to +100% of the ICAL midpoint standard?

Were the retention times of the internal standards within +/- 0.05 min seconds of the retention times of the ICAL midpoint standard?

#	Date	Sample ID	Internal Standard	70R Area (1 imits) 48 (50-200)	RT (Limits)	Qualifications
		Sample ID 3 (AAS)	HBD	48 (50-200)		JMJ/A (BB)
		_	/			/ /
ļ						
-						
	!		<u> </u>			1
			1			
	- All Market					

HBP = Hoxabromobitheny/

N N/A

Y N N/A

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates

METHOD: V GC HPLC

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". MN N/A

Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG?

Was an MS/MSD analyzed every 20 samples for each matrix or whenever a sample extraction was performed?

Were the MS/MSD percent recoveries (%R) and relative percent differences (RPD) within QC limits?

#	MS/MŞD ID	Compound	MS %R (Limits)	MSD %R (Limits)	RPD (Limits)	Associated Samples	Qualifications
	MS/MSD ID	Arodor 1260	269 (58-120)	()	()	1 (dets)	Lets/A
	/	1	()	()	69.5 (335)		
			()	()	()		
			()	()	()		
			()	()	()		
				()	()		
			()	()	()		
			()	(·)	()		
			. ()	()	(.)		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
\vdash			()	()	· · · · · · · · · · · · · · · · · · ·		
			, ,	, ,	, ,		
			/		, ,		
				()			
				, ,	, ,		

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page:_	
Reviewer:	9

METHOD: GC	 HPLC	

The calibration factors (CF) and relative standard deviation (%RSD) were recalculated using the following calculations:

CF = A/C

Average CF = sum of the CF/number of standards

%RSD = 100 * (S/X)

Where: A = Area of compound

C = Concentration of compound

S = Standard deviation of calibration factors

X = Mean of calibration factors

				Reported	Recalculated	Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compound	CF (<i>Of)</i> std)	CF (80 std)	Ave CF (initial)	Ave CF (intial)	%RSD	%RSD
1	KAZ	19/0/20	Anador-1260-1 (10)	0.02377	0.02317	0.02389	0.02389	12.037 3.25=	12.04
		7/7/	(-2)	0.03950	0.03950	0.04026	0.02389	3.25 ≥	3.25
<u> </u>									
2									
	:								
<u> </u>									
3									
I									
4									

Comments:	Refer to Initial	Calibration findings	worksheet for	list of qualification	is and associate	<u>d samples when</u>	reported r	esults do no	ot agree within	10.0%	of the
recalculated	results.										
			<u> </u>								

LDC #: <u>49590c3</u>6

VALIDATION FINDINGS WORKSHEET <u>Continuing Calibration Results Verification</u>

Page:_		_
Reviewer:	_	

METHOD: __ GC_HPLC

The percent difference (%D) of the initial calibration average Calibration Factors (CF) and the continuing calibration CF were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. CF -CF)/ave.CF

Where: ave. CF = initial calibration average CF

CF = continuing calibration CF

A = Area of compound

C = Concentration of compound

				= Concentration of compou	10			
	Standard	Calibration			Reported	Recalculated	Reported	Recalculated
#	ID	Date	Compound	Average CF(Ical)/ CCV Conc.	CF/ Conc. CCV	CF/ Conc. CCV	%D	%D
1	20/209362007	10/10/20	Avadox 1760(12)	250.0	261	261	4.3	4.3
		17.7	(20)	l	278	<i>278</i>	11.3	11.3
L								
2	2/095/207	10/10/50		2500	278	278	11.0	11.1
		' / '/	<u> </u>	V	302	302	⊃0, &	20,8
3								
4								

VALIDATION FINDINGS WORKSHEET Surrogate Results Verification

Page:_	
Reviewer:	9

The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the following calculation:

% Recovery: SF/SS * 100

Where: SF = Surrogate Found

SS = Surrogate Spiked

San	nple) ID	:

Surrogate	Column/Detector	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
				Reported	Recalculated	
DEB	10	40.0	37.0	925	92,5	
TEMX	1	,	37.03.9	79.7	79.7	
11	20		29.8	74.6,	74.5	
TCMX	/	V	33.0	<i>8</i> 2.4	82.5	

Sample ID:

Surrogate	Column/Detector	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
				Reported	Recalculated	

Sample ID:

Surrogate	Column/Detector	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
				Reported	Recalculated	

LDC #: 49590C36

VALIDATION FINDINGS WORKSHEET <u>Matrix Spike/Matrix Spike Duplicates Results Verification</u>

Page:_	of
Reviewer:	9

METHOD:	l∕ GC	HPLC

The percent recoveries (%R) and relative percent differences (RPD) of the matrix spike and matrix spike duplicate were recalculated for the compounds identified below using the following calculation:

%Recovery = 100 * (SSC - SC)/SA

Where

SSC = Spiked sample concentration

SC = Sample concentration

RPD =(({SSCMS - SSCMSD} * 2) / (SSCMS + SSCMSD))*100

SA = Spike added MS = Matrix spike

MSD = Matrix spike duplicate

MS/MSD samples:

		Spike Sar		Sample Spike Sample		Matrix spike		Matrix Spike Duplicate		MS/I	ISD	
Compound		Add	(Solution)	(NGS)	Concentration		Percent Recovery		Percent Recovery		RPD	
Contract Contract		MS	MSD	400	MS	MSD	Reported	Recalc.	Reported	Recalc.	Reported	Recalc.
Gasoline	(8015)											
Diesel	(8015)											
Benzene	(8021B)										l	
Methane	(RSK-175)											
2,4-D	(8151)											
Dinoseb	(8151)	-										
Naphthalene	(8310)											
Anthracene	(8310)											
НМХ	(8330)											
2,4,6-Trinitroto	oluene (8330)											
Araclor	1260	101	101	76.6	347	168	269	268	90.8	90.5	69.5	69.5
]	1		l]]	

Comments: Refer to Matrix Spike/Matrix Spike Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

VALIDATION FINDINGS WORKSHEET Laboratory Control Sample/Laboratory Control Sample Duplicates Results Verification

Page:_		/
Reviewer:	9	

The percent recoveries (%R) and relative percent differences (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:

%Recovery = 100 * (SSC - SC)/SA

Where

SSC = Spiked sample concentration SA = Spike added

SC = Sample concentration

RPD =(({SSCLCS - SSCLCSD} * 2) / (SSCLCS + SSCLCSD))*100

LCS = Laboratory Control Sample

LCSD = Laboratory Control Sample duplicate

LCS/LCSD samples: Bt 10070-Bs /

		Spike Added			Spike Sample Concentration		s	LC	SD	LCS/I	LCSD
Co	mpound	Adaled (MHS)		(MHZ)		Percent Recovery		Percent Recovery		RPD	
		LCS	LCSD	LCS	LCSD	Reported	Recalc.	Reported	Recalc.	Reported	Recalc.
Casoline	(8015) RB-126	1001	101	100	99.6	99.6	99.0	98.8	98.6	0.84/3	0.40
Diesel	(8015)										
Benzene	(8021B)										
Methane	(RSK-175)										
2,4-D	(8151)										
Dinoseb	(8151)						,				
Naphthalene	(8310)										
Anthracene	(8310)										
НМХ	(8330)										
2,4,6-Trinitroto	oluene (8330)										
Araclo/	360	101	101	102	99.7	102	10/	98.9	48.7	2.65	_2≥8 -

Comments: Refer to Laboratory Control Sample/Laboratory Control Sample Duplicate findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

LDC #: 4959003/

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page: _	195/
Reviewer:	4

_C

Concentration= (A)(Fv)(Df)

Υ	h	N/A
	N	N/A

Were all reported results recalculated and verified for all level IV samples?

Were all recalculated results for detected target compounds within 10% of the reported results?

	(RF)(Vs or Ws)(%S/100)
Fv=	Area or height of the compound to be measured Final Volume of extract Dilution Factor
RF=	Average response factor of the compound In the initial calibration

Vs= Initial volume of the sample Ws= Initial weight of the sample

%S= Percent Solid

Examp	ole:

Sample ID	Compound Name _	70B-1260-1
-----------	-----------------	------------

Concentration =	(184T3)	(80)	 In 5
	(181697	T) (002389	70.

Zenctalal= (3405, 263, 4386, 9404, 9419, 3) x = 5x | = 76.6 M/KS

#	Sample ID	Compound	Reported Concertiations	Recalculated Results Concentrations ()	Qualifications
		POB-P60	76.6		

Comments:	:	

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Duwamish AOC4

LDC Report Date:

November 9, 2020

Parameters:

Mercury

Validation Level:

Stage 4

Laboratory:

Analytical Resources, Inc.

Sample Delivery Group (SDG): 2010211

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
LDW20-SC149	2010211-01	Sediment	06/25/20
LDW20-SS300	2010211-17	Sediment	06/29/20
LDW20-SS305	2010211-18	Sediment	06/29/20
LDW20-SS307	2010211-19	Sediment	06/29/20
LDW20-SC149MS	20I0211-01MS	Sediment	06/25/20
LDW20-SC149MSD	20I0211-01MSD	Sediment	06/25/20
LDW20-SC149DUP	20I0211-01DUP	Sediment	06/25/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Lower Duwamish Waterway Quality Assurance Project Plan for Remedial Design of Upper Reach: Pre-Design Investigation (May 2020) and a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Mercury by Environmental Protection Agency (EPA) SW 846 Method 7471B

All sample results were subjected to Stage 4 evaluation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met with the following exceptions:

Sample	Analyte	Total Days From Sample Collection Until Analysis	Required Holding Time (in Days) From Sample Collection Until Analysis	Flag	A or P
LDW20-SC149 LDW20-SC149DUP	Mercury	105	28	J (all detects)	Р
LDW20-SS300 LDW20-SS305 LDW20-SS307	Mercury	101	28	J (all detects)	Р

II. Instrument Calibration

Initial and continuing calibrations were performed as required by the method.

The initial calibration verification (ICV) and continuing calibration verification (CCV) standards were within QC limits.

III. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

IV. Field Blanks

No field blanks were identified in this SDG.

V. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

VI. Duplicate Sample Analysis

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits.

VII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

VIII. Field Duplicates

No field duplicates were identified in this SDG.

IX. Sample Result Verification

All sample result verifications were acceptable.

X. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Due to technical holding time, data were qualified as estimated in five samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable.

Duwamish AOC4 Mercury - Data Qualification Summary - SDG 2010211

Sample	Analyte	Flag	A or P	Reason
LDW20-SC149 LDW20-SS300 LDW20-SS305 LDW20-SS307 LDW20-SC149DUP	Mercury	J (all detects)	Р	Technical holding times

Duwamish AOC4

Mercury - Laboratory Blank Data Qualification Summary - SDG 2010211

No Sample Data Qualified in this SDG

Duwamish AOC4

Mercury - Field Blank Data Qualification Summary - SDG 2010211

No Sample Data Qualified in this SDG

						/-
				S WORKSHEET		Date: 11/S
	#: <u>2010211</u>		Stage 4		В	Page:of
Labora	atory: Analytical Resources, Inc.				2nd R	Reviewer:
METH	IOD: Mercury (EPA SW 846 Method 7	′471B)			2.1011	ioviovio.
					e:	
	amples listed below were reviewed for tion findings worksheets.	each of the fo	ollowing valida	ation areas. Validatio	n findings are r	noted in attache
	Validation Area			Comm	ents	
1.	Sample receipt/Technical holding times	ASW				
11.	Instrument Calibration	A				
111.	Laboratory Blanks	A				
IV.	Field Blanks	N				
V.	Matrix Spike/Matrix Spike Duplicates	A				
VI.	Duplicate sample analysis	A				
VII.	Laboratory control samples	A	LCS			
VIII.	Field Duplicates	\mathcal{N}				
IX.	Sample Result Verification	A				
L _X	Overall Assessment of Data	<u> </u>				
Note:	N = Not provided/applicable R =	= No compounds Rinsate = Field blank	s detected	D = Duplicate TB = Trip blank EB = Equipment blan	SB=Sourc OTHER: k	ce blank
	Client ID			Lab ID	Matrix	Date
1 1	LDW20-SC149			2010211-01	Sediment	06/25/20
2 l	LDW20-SS300			2010211-17	Sediment	06/29/20
3 1	LDW20-SS305			2010211-18	Sediment	06/29/20
4 1	LDW20-SS307		· · · · · · · · · · · · · · · · · · ·	2010211-19	Sediment	06/29/20
5 I	LDW20-SC149MS			2010211-01MS	Sediment	06/25/20
6 L	LDW20-SC149MSD			2010211-01MSD	Sediment	06/25/20
7 1	LDW20-SC149DUP			2010211-01DUP	Sediment	06/25/20
8						
9		V		<u> </u>		
10						
11						

Notes:

METHOD: Trace Metals (EPA SW 846 Methods 60	10/60	20/70	000)	
Validation Area	Yes	No	NA	Comments
I. Technical holding times			. •	
Were all technical holding times met?		Х		
Were all water samples preserved to a pH of <2.			Х	
II. ICP-MS Tune				
Were mass resolutions within 0.1 amu for all				
isotopes in the tuning solution?			x	
Were %RSDs of isoptoes in the tuning solution				
≤5%?			x	
III. Calibration				
Were all instuments calibrated daily?	Х		1	
Were the proper standards used?	Х			
Were all initial and continuing calibration				
verifications within the 90-110% (80-120% for				
mercury) QC limits?	x			
Were the low level standard checks within 70-				
130%?			x	
 Were all initial calibration correlation coefficients				
within limits as specifed by the method?	x			
IV. Blanks	<u> </u>		<u> </u>	
Was a method blank associated with every				
sample in this SDG?	x			
 Was there contamination in the method blanks?		x		
Was there contamination in the initial and				
continuing calibration blanks?		x		
V. Interference Check Sample		1^	1	
Were the interference check samples performed	<u> </u>	I	1	T
daily?			x	
 Were the AB solution recoveries within 80-120%?			x	
VI. Matrix Spike/Matrix Spike Duplicates/Labora		Duplic		
Were MS/MSD recoveries with the QC limits? (If		T		
the sample concentration exceeded the spike				
concentration by a factor of 4, no action was				
taken.)	x			
Were the MS/MSD or laboratory duplicate			+	
relative percent differences (RPDs) within the QC				
limits?	x			
VII. Laboratory Control Samples	1	1		
Was a LCS analyzed for each batch in the SDG?	Х			
		1		
Were the LCS recoveries and RPDs (if applicable) within QC limits?	x			
within QC innits:	^	1	1	

METHOD: Trace Metals (EPA SW 846 Methods 60 Validation Area	Yes	No	NA	Comments
Vill. Internal Standards	1163	INO	IVA	Comments
		1	1	
Were all percent recoveries within the 30-120%		İ		
(60-125% for EPA Method 200.8) QC limits?			X	
If the recoveries were outside the limits, was a				
reanalysis performed?			Х	
IX. Serial Dilution				
Were all percent differences <10%?			Х	
Was there evidence of negative interference? If				
yes, professional judgement will be used to				
qualify the data.			x	
X. Sample Result Verification		<u> </u>		
Were all reporting limits adjusted to reflect				
sample dilutions?	x			
Were all soil samples dry weight corrected?	Х			
XI. Overall Assessment of Data				
Was the overall assessment of the data found to				
be acceptable?	x			
XII. Field Duplicates	•	•	•	
Were field duplicates identifed in this SDG?		Х		
Were target analytes detected in the field				
duplicates?			x	
XIII. Field Blanks	•			•
Were field blanks identified in this SDG?		Х		
Were target analytes detected in the field				
blanks?			l _x	

VALIDATION FINDINGS WORKSHEETS <u>Holding Time</u>

METHOD: Trace Metals (EPA SW 846 Methods 6010/6020/7000)

All samples were properly preserved (water samples to a pH of <2) and analyzed within the required holding time with the following exceptions.

Method:			Mercury by 7471B	, HT = 28 day	'S
			Total Time from		
			Collection to		
Sample ID	Sampling Date	Analysis Date	Analysis (Days)	Qualifier	Det/ND
1, 7	6/25/2020	10/8/2020	105	J/R/P	Det
2, 3, 4	6/29/2020	10/8/2020	101	J/R/P	Det
_					

Page 1 of 1 Reviewer:CR

METHOD: Trace Metals (EPA SW 846 Methods 6010/6020/7000)

An intial calibration verification (ICV), continuing calibration verification (CCV), low level calibration check (LLCC), and interference check sample (ICSAB) percent recovery (%R) was recalculated for each type of analysis using the following formula:

%R = (Found/True) x 100

Found = concentration of each analyte measured in the analysis

True = concentration of each analyte in the source

Standard ID	Type of Analysis	Element	Found (mg/L)	Found (mg/L)	Recalcuated %R	Reported %R	Acceptable (Y/N)
ICV	CVAA	Hg	0.00413	0.004	103.25	103	Υ
CCV	CVAA	Hg	0.00405	0.004	101.25	101	Υ

METHOD: Trace Metals (EPA SW 846 Methods 6010/6020/7000)

Percent recoveries (%R) for the laboratory control sample (LCS), matrix spike (MS), and post digestion spike (PDS) were recalculated using the following formula:

 $%R = (Found/True) \times 100$

Found = concentration of each analyte measured in the analysis. For the MS calculation, Found = SSR (Spiked Sample Result) - SR (Sample Result)

True = concentration of each analyte in the source

The sample and duplicate relative percent difference (RPD) was recalculated using the following formula:

RPD = (Absolute value(S-D)x 200) / (S+D)

S = Original sample concentration

D = Duplicate sample concentration

The serial dilution percent difference (%D) was recalculated using the following formula.

%D = (Absolute value (I - SDR)) \times 100 / (I)

I = Initial sample result

SDR = Serial dilution result (with a 5x dilution applied)

					Recalcuated	Reported	
Sample ID	Type of Analysis	Element	Found/S/I	True/D/SDR	%R/RPD/%D	%R/RPD/%D	Acceptable (Y/N)
LCS	LCS	Hg	0.469	0.5	93.8	93.9	Υ
	5 MS		0.3261	0.266	123	123	Υ
	7 Duplicate		0.0569	0.0611	7.12	7.09	Υ

Page 1 of 1 Reviewer:CR

METHOD: Trace Metals (EPA SW 846 Methods 6010/6020/7000)

Analytes were recalculated and verified using the following equation:

Concentration = (Result from raw data x Final volume x Dilution factor) / (Percent solids x Initial weight)

								Recalcuated	
					Final Volume	Percent	Reported	Result	Acceptable
Sample ID	Analyte	Raw Data (ug/L)	Dilution	Initial Weight (g)	(mL)	solids (%)	Result (mg/Kg)	(mg/Kg)	(Y/N)
1	Hg	0.2091	1	0.262	50	70.12	0.0569	0.0569	Υ
2	Hg	0.4249	1	0.28	50	48.62	0.156	0.156	Υ
3	Hg	0.2596	1	0.291	50	49.04	0.091	0.091	Υ
4	Hg	0.36	1	0.263	50	53.05	0.129	0.129	Υ
			·						

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Duwamish AOC4

LDC Report Date: November 9, 2020

Parameters: Wet Chemistry

Validation Level: Stage 4

Laboratory: Analytical Resources, Inc.

Sample Delivery Group (SDG): 2010211

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
LDW20-SC149	2010211-01	Sediment	06/25/20
LDW20-SC126	2010211-02	Sediment	06/25/20
LDW20-SC138	2010211-03	Sediment	06/25/20
LDW20-SC201B	2010211-04	Sediment	06/25/20
LDW20-IT300	2010211-05	Sediment	06/25/20
LDW20-SC111	2010211-06	Sediment	06/25/20
LDW20-SC108	2010211-07	Sediment	06/25/20
LDW20-SC104	2010211-08	Sediment	06/25/20
LDW20-SC103	2010211-09	Sediment	06/25/20
LDW20-SC100	2010211-10	Sediment	06/25/20
LDW20-SC114	2010211-11	Sediment	06/25/20
LDW20-SC115	2010211-12	Sediment	06/25/20
LDW20-SC118	2010211-13	Sediment	06/25/20
LDW20-SC119	2010211-14	Sediment	06/25/20
LDW20-SC122	2010211-15	Sediment	06/25/20
LDW20-SC129	2010211-16	Sediment	06/25/20
LDW20-SS300	2010211-17	Sediment	06/29/20
LDW20-SS305	2010211-18	Sediment	06/29/20
LDW20-SS307	2010211-19	Sediment	06/29/20
LDW20-SS315	2010211-20	Sediment	06/29/20
LDW20-SC149MS	2010211-01MS	Sediment	06/25/20
LDW20-SC149DUP	2010211-01DUP	Sediment	06/25/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Lower Duwamish Waterway Quality Assurance Project Plan for Remedial Design of Upper Reach: Pre-Design Investigation (May 2020) and a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:

Total Organic Carbon by Environmental Protection Agency (EPA) SW 846 Method 9060A

Total Solids by Standard Method 2540G

All sample results were subjected to Stage 4 data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. Initial Calibration

All criteria for the initial calibration of each method were met.

III. Continuing Calibration

Continuing calibration frequency and analysis criteria were met for each method when applicable.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks with the following exceptions:

Blank ID	Analyte	Maximum Concentration	Associated Samples
ICB/CCB	Total organic carbon	0.02%	LDW20-SS307 LDW20-SS315

Data qualification by the laboratory blanks was based on the maximum contaminant concentration in the laboratory blanks in the analysis of each analyte. The sample concentrations were either not detected or were significantly greater than the concentrations found in the associated laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits.

VII. Duplicate Sample Analysis

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits.

VIII. Laboratory Control Samples/Standard Reference Materials

Laboratory control samples (LCS) were analyzed as required by the methods. Percent recoveries (%R) were within QC limits.

Standard reference materials (SRM) were analyzed as required by the methods. The results were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Sample Result Verification

All sample result verifications were acceptable.

XI. Overall Assessment of Data

The analysis was conducted within all specifications of the methods. No results were rejected in this SDG.

The quality control criteria reviewed were met and are considered acceptable.

Duwamish AOC4
Wet Chemistry - Data Qualification Summary - SDG 2010211

No Sample Data Qualified in this SDG

Duwamish AOC4

Wet Chemistry - Laboratory Blank Data Qualification Summary - SDG 2010211

No Sample Data Qualified in this SDG

Duwamish AOC4

Wet Chemistry - Field Blank Data Qualification Summary - SDG 2010211

No Sample Data Qualified in this SDG

LDC #:_	49590C6	VALIDATION COMPLETENESS WORKSHEET
SDG #:	2010211	Stage 4
Laborato	ory: Analytica	esources, Inc.

Reviewer: 2nd Reviewer:

METHOD: (Analyte) TOC (EPA SW846 9060A), Total Solids (SM 2540G)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
l.	Sample receipt/Technical holding times	AA	
ll ll	Initial calibration	A	
111.	Calibration verification	A	
IV	Laboratory Blanks	SW	
V	Field blanks	<i>N</i>	
VI.	Matrix Spike/Matrix Spike Duplicates	A	
VII.	Duplicate sample analysis	A	
VIII.	Laboratory control samples	A	CCS SPRM
IX.	Field duplicates	_ N	
X.	Sample result verification	A	
ΧI	Overall assessment of data	IA-	

Note: A = Acceptable

N = Not provided/applicable SW = See worksheet

ND = No compounds detected

R = Rinsate FB = Field blank D = Duplicate TB = Trip blank

SB=Source blank OTHER: EB = Equipment blank

	Client ID	Lab ID	Matrix	Date
1	LDW20-SC149	2010211-01	Sediment	06/25/20
2	LDW20-SC126	2010211-02	Sediment	06/25/20
3	LDW20-SC138	2010211-03	Sediment	06/25/20
4	LDW20-SC201B	2010211-04	Sediment	06/25/20
5	LDW20-IT300	2010211-05	Sediment	06/25/20
6	LDW20-SC111	2010211-06	Sediment	06/25/20
7	LDW20-SC108	2010211-07	Sediment	06/25/20
8	LDW20-SC104	2010211-08	Sediment	06/25/20
9	LDW20-SC103	2010211-09	Sediment	06/25/20
10	LDW20-SC100	2010211-10	Sediment	06/25/20
11	LDW20-SC114	2010211-11	Sediment	06/25/20
12	LDW20-SC115	2010211-12	Sediment	06/25/20
13	LDW20-SC118	2010211-13	Sediment	06/25/20
14	LDW20-SC119	2010211-14	Sediment	06/25/20
15	LDW20-SC122	2010211-15	Sediment	06/25/20
16	LDW20-SC129	2010211-16	Sediment	06/25/20
17	LDW20-SS300	2010211-17	Sediment	06/29/20

LDC #: 49590C6	VALIDATION COMPLETENESS WORKSHEET
SDG #: 2010211	Stage 4

Date: 115/20
Page: 2of 2
Reviewer: 2nd Reviewer: 2

Laboratory: Analytical Resources, Inc.

METHOD: (Analyte) TOC (EPA SW846 9060A), Total Solids (SM 2540G)

18	LDW20-SS305	2010211-18	Sediment	06/29/20
19	LDW20-SS307	2010211-19	Sediment	06/29/20
20	LDW20-SS315	2010211-20	Sediment	06/29/20
21	LDW20-SC149MS	2010211-01MS	Sediment	06/25/20
22	LDW20-SC149DUP	2010211-01DUP	Sediment	06/29/20 06/29/20
23				
24				
25				
lote	s:			

METHOD: Inorganics				
Validation Area	Yes	No	NA	Comments
I. Technical holding times				
Were all technical holding times were met?	X			
II. Calibration				
Were all instuments calibrated at the				
requried frequency?	X			
Were the proper number of standards				
used?	X			
Were all initial and continuing calibration				
verifications within the QC limits?	X			
Were all initial calibration correlation				
coefficients within limits as specifed by the				
method?	x			
Were balance checks performed as				
required?	x			
III. Blanks	1			
Was a method blank assoicated with every		Τ		
sample in this SDG?	x		İ	
Was there contamination in the method	<u> </u>			
blanks?		x		
Was there contamination in the initial and		 		
continuing calibration blanks?	x			
IV. Matrix Spike/Matrix Spike Duplicates/I	1	ory Du	nlicatos	
	-aborat	Jory Du	phicates	,
Were MS/MSD recoveries with the QC				
limits? (If the sample concentration				
exceeded the spike concentration by a	\ <u></u>			
factor of 4, no action was taken.)	X	<u> </u>	-	
Were the MS/MSD or laboratory duplicate				
relative percent differences (RPDs) within				
the QC limits?	Х	<u> </u>	<u> </u>	
V. Laboratory Control Samples	1	1		T
Was a LCS analyzed for each batch in the	,			
SDG?	Х		-	
Were the LCS recoveries and RPDs (if				
applicable) within QC limits?	Х			
X. Sample Result Verification				
Were all reproting limits adjusted to reflect				
sample dilutions?	Х			
Were all soil samples dry weight corrected?	X			
XI. Overall Assessment of Data	1	ı		T
Was the overall assessment of the data				
found to be acceptable?	IX	1	1	

METHOD: Inorganics		_			
Validation Area	Yes	No	N.	Α	Comments
XII. Field Duplicates					
Were field duplicates identifed in this SDG?		x			
Were target analytes detected in the field duplicates?			х		
XIII. Field Blanks			,		
Were field blanks identified in this SDG?		X			
Were target analytes detected in the field blanks?			x		

VALIDATION FINDINGS WORKSHEET Sample Specific Element Reference

All elements are applicable to each sample as noted below.

Sample ID	Target Analyte List
1 to 20	Total solids, TOC
QC:	
	21 TOC
	22 Total solids, TOC
-	

LDC #: 49590C6

VALIDATION FINDINGS WORKSHEET <u>Laboratory Blank Contamination (PB/ICB/CCB)</u>

Page 1 of 1 Reviewer:CR

METHOD: Inorganics

Soil preparation factor applied (if applicable):

Sample Concentration, unless otherwise noted: %

Associated Samples: 19, 20

				Sample Identification								
Analyte	PB (units)	Maximum ICB/CCB (%)	Action Level	No qual								
TOC		0.02	0.02									
							_					
												_

Comments: The listed analyte concentration is the highest ICB or CCB detected in the analysis. The action level, when applicable, is establised

VALIDATION FINDINGS WORKSHEET Initial and Continuing Calibration Calculation Verification

_ \	١.
Page:_	of
Reviewer:	a

METHOD: Inorganics, Method See cover	
--------------------------------------	--

An initial or continuing calibration verification percent recovery (%R) was recalculated for each type of analysis using the following formula:

%R = <u>Found</u> x 100 True

Where, Found = concentration of each analyte <u>measured</u> in the analysis of the ICV or CCV solution
True = concentration of each analyte in the ICV or CCV source

						Recalculated	Reported	
Type of Analysis	Analyte Stan		Standard ID	Found (units) True (units)		%R	%R	Acceptable (Y/N)
Initial verification	10	C	IW	44.345	44.446	99.8	99.8	
Calibration verification			CCV	44911		101	101	
Calibration verification			CCV	45,408		102	102	

Comments: Refer to	Calibration V	erification finding	s worksheet for list	t of qualifications	and associated sa	amples when rep	orted results do no	ot agree within 10).0% of the
recalculated results.								- <u> </u>	
							dia di di di di di di di di di di di di di		

METHOD: Inorganics

Percent recoveries (%R) for the laboratory control sample (LCS) and matrix spike (MS) were recalcuated using the following formula.

 $%R = (Found/True) \times 100$

Found = concentration of each analyte measured in the analysis. For the MS calculation, Found = SSR (Spiked Sample Result) - SR (Sample Result)

True = concentraiton of each analyte in the source

The sample and duplciate relative percent difference (RPD) was recalcuated using the following formula.

RPD = (Absolute value(S-D)x 200) / (S+D)

S = Original sample concentraiton

D = Duplciate sample concentration

					Recalcuated	Reported	
Sample ID	Type of Analysis	Element	Found/S	True/D	%R/RPD	%R/RPD	Acceptable (Y/N)
LCS	LCS	тос	44.9	44.4	101	101	Υ
21	MS	TOC	0.96	1.06	90.6	90.5	Υ
22	Duplicate	TS	70.12	69.64	0.687	0.685	Υ

METHOD: Inorganics

Analytes were recalcuated and verified using the following equation.

Concentration = (Result from raw data x Final volume x Dilution factor) / (Percent solids (if applicable) x Initial weight or volume)

						Percent	Reported	Recalcuated	Acceptable
Sample ID	Analyte	Raw Data (%)	Tare (g)	Dry (g)	Sample (g)	solids (%)	Result (%)	Result (%)	(Y/N)
1	тос	0.686				70.12	0.98	0.98	Υ
2	TOC	1.001				58.69	1.71	1.71	Υ
3	тос	0.988				60.31	1.64	1.64	Υ
4	TOC	1.277				60.72	2.10	2.10	Υ
5	тос	2.428				35.18	6.90	6.90	Υ
6	тос	0.904				58.65	1.54	1.54	Υ
7	TOC	0.98				57.68	1.70	1.70	Υ
8	тос	1.073				60.24	1.78	1.78	Υ
9	тос	1.03				58.43	1.76		
10	тос	0.826				60.09	1.37	1.37	
11	Total solids		0.8097	4.1573	6.8835		55.12	55.12	Υ
12	Total solids		0.8028	4.1331	6.6689		56.77	56.77	Υ
13	Total solids		0.8	3.9301	6.5531		54.41	54.41	Υ
14	Total solids		0.8015	4.3268	6.7944		58.82	58.82	Υ
15	Total solids		0.8028	3.7227	6.153		54.58	54.58	Υ
16	Total solids		0.7947	3.8377	6.545		52.92	52.92	Υ
17	Total solids		0.8001	3.6139	6.588		48.62	48.62	Υ
18	Total solids		0.8097	3.9267	7.1658		49.04	49.04	Υ
19	Total solids		0.7856	3.663	6.2096		53.05	53.05	Υ
20	Total solids		0.8028	3.9387	7.0375		50.30	50.30	Υ

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Duwamish AOC4

LDC Report Date: November 11, 2020

Parameters: Polychlorinated Dioxins/Dibenzofurans

Validation Level: Stage 4

Laboratory: Analytical Resources, Inc.

Sample Delivery Group (SDG): 2010211

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
LDW20-SC149	2010211-01	Sediment	06/25/20
LDW20-SC201B	2010211-04	Sediment	06/25/20
LDW20-IT300	2010211-05	Sediment	06/25/20
LDW20-SS300	2010211-17	Sediment	06/29/20
LDW20-SS305	2010211-18	Sediment	06/29/20
LDW20-SS307	2010211-19	Sediment	06/29/20
LDW20-SC149DUP	20I0211-01DUP	Sediment	06/25/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Lower Duwamish Waterway Quality Assurance Project Plan for Remedial Design of Upper Reach: Pre-Design Investigation (May 2020) and a modified outline of the USEPA National Functional Guidelines (NFG) for High Resolution Superfund Methods Data Review (April 2016). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polychlorinated Dioxins/Dibenzofurans by Environmental Protection Agency (EPA) Method 1613B

All sample results were subjected to Stage 4 data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered not detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. HRGC/HRMS Instrument Performance Check

Instrument performance was checked at the required frequency.

Retention time windows were established for all homologues. The chromatographic resolution between 2,3,7,8-TCDD and peaks representing any other unlabeled TCDD isomer was less than or equal to 25%.

The static resolving power was at least 10,000 (10% valley definition).

III. Initial Calibration and Initial Calibration Verification

A five point initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0% for unlabeled compounds and less than or equal to 35.0% for labeled compounds.

The ion abundance ratios for all PCDDs and PCDFs were within validation criteria.

The minimum S/N ratio was greater than or equal to 10 for each unlabeled compound and labeled compound.

The percent differences (%D) of the initial calibration verification (ICV) standard were within the QC limits for unlabeled compounds and labeled compounds.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

All of the continuing calibration results were within the QC limits for unlabeled compounds and labeled compounds with the following exceptions:

Date	Compound	Concentration (Limits)	Associated Samples	Flag	A or P
10/20/20	1,2,3,4,6,7,8-HpCDF	58.2 ng/mL (45-55)	All samples in SDG 20I0211	J (all detects)	Р

The ion abundance ratios for all PCDDs and PCDFs were within validation criteria.

The minimum S/N ratio was greater than or equal to 10 for each unlabeled compound and labeled compound.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks with the following exceptions:

Blank ID	Extraction Date	Compound	Concentration	Associated Samples
BIJ0365-BLK1	10/14/20	1,2,3,4,6,7,8-HpCDD OCDD	0.280 ng/Kg 1.78 ng/Kg	All samples in SDG 20l0211

Sample concentrations were compared to concentrations detected in the laboratory blanks. The sample concentrations were either not detected or were significantly greater than the concentrations found in the associated laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Matrix Spike/Matrix Spike Duplicates/Duplicate Sample Analysis

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits.

VIII. Laboratory Control Samples/Standard Reference Materials

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

Standard reference materials (SRM) were analyzed as required by the method. The results were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Labeled Compounds

All percent recoveries (%R) for labeled compounds used to quantitate target compounds were within QC limits.

XI. Compound Quantitation

All compound quantitations were within validation criteria with the following exceptions:

Sample	Compound	Flag	A or P
All samples in SDG 20l0211	All compounds reported as estimated maximum possible concentration (EMPC) and greater than the reporting limit.	J (all detects)	А
All samples in SDG 20l0211	All compounds reported as estimated maximum possible concentration (EMPC) and less than the reporting limit.	U (all non-detects)	А
LDW20-SS300	All results flagged "X" by the laboratory due to chlorinated diphenyl ether (CDPE) interference.	J (all detects)	А

XII. Target Compound Identifications

All target compound identifications met validation criteria.

XIII. System Performance

The system performance was acceptable.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Due to continuing calibration concentration, compounds reported as EMPC, and CDPE interference, data were qualified as estimated in seven samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable.

Duwamish AOC4 Polychlorinated Dioxins/Dibenzofurans - Data Qualification Summary - SDG 2010211

Sample	Compound	Flag	A or P	Reason	
LDW20-SC149 LDW20-SC201B LDW20-IT300 LDW20-SS300 LDW20-SS305 LDW20-SS307 LDW20-SC149DUP	20-SC201B 20-IT300 20-SS300 20-SS305 20-SS307		Р	Continuing calibration (concentration)	
LDW20-SC149 LDW20-SC201B LDW20-IT300 LDW20-SS300 LDW20-SS305 LDW20-SS307 LDW20-SC149DUP	All compounds reported as estimated maximum possible concentration (EMPC) and greater than the reporting limit.	J (all detects)	А	Compound quantitation (EMPC)	
LDW20-SC149 LDW20-SC201B LDW20-IT300 LDW20-SS300 LDW20-SS305 LDW20-SS307 LDW20-SC149DUP	All compounds reported as estimated maximum possible concentration (EMPC) and less than the reporting limit.	U (all non-detects)	А	Compound quantitation (EMPC)	
LDW20-SS300	All results flagged "X" by the laboratory due to chlorinated diphenyl ether (CDPE) interference.	J (all detects)	Α	Compound quantitation (CDPE interference)	

Duwamish AOC4

Polychlorinated Dioxins/Dibenzofurans - Laboratory Blank Data Qualification Summary - SDG 2010211

No Sample Data Qualified in this SDG

Duwamish AOC4

Polychlorinated Dioxins/Dibenzofurans - Field Blank Data Qualification Summary - SDG 2010211

No Sample Data Qualified in this SDG

### Proposed)G#	: VALIDATIO :: tory:_ <u>Analytical Resources, Inc.</u>		Stage 4	S WORKSHEET	R	Date: <u>////</u> Page:of_ eviewer:
The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in a alidation findings worksheets. Validation Area Comments			ins/Dibenzo	ofurans (EPA	Method 1613B)	2nd R	eviewer: 7
Validation Area Comments				·	·	- finalinan	
II. HRGC/HRMS instrument performance check III. Initial celibration/ICV IV. Continuing calibration V. Laboratory Blanks VI. Field blanks VII. Matrix spike/Matrix spike duplicates OWP VIII. Laboratory control samples VIII. Laboratory control samples VIII. Target compound identification VIII. Target compound identification VIII. System performance VIV. Overall assessment of data VIV. Overall assessment of data VIII. System performance VIV. Overall assessment of data VIII. Client ID VIII. Lab ID VIII. Lab ID VIII. Lab ID VIII. Lab ID VIII. Lab ID VIII. Sediment VIII. Date VIII. Lab ID VIII. Sediment VIII. Date VIII. Lab ID VIII. Sediment VIII. Date VIII. Lab ID VIII. Sediment VIII. Date VIII. Lab ID VIII. Sediment VIII. Date VIII. Lab ID VIII. Sediment VIII. Date VIII. Lab ID VIII. Sediment VIII. Date VIII. Lab ID VIII. Lab ID VIII. Sediment VIII. Date VIII. Lab ID VIII. Sediment VIII. Date VIII. Date VIII. Lab ID VIII. Sediment VIII. Date VIII. Date VIII. Lab ID VIII. Sediment VIII. Date			ich of the fo	onowing valida	ition areas. Validatio	n findings are r	ioted in attacr
II. HRGC/HRMS instrument performance check III. Initial calibration/ICV IV. Continuing calibration V. Laboratory Blanks VI. Epied blanks VII. Matrix spike/Matrix spike duplicates VIII. Laboratory control samples VIII. Laboratory control samples VIII. Target compound identification VIII. Target compound identification VIII. Target compound identification VIII. Vovall assessment of data VIII. Vovall assessment of data VIII. Vovall assessment of data VIII. Client ID VIII. Lab ID VIII. Lab ID VIII. Lab ID VIII. Lab ID VIII. Lab ID VIII. Lab ID VIII. Lab ID VIII. Lab ID VIII. Sediment VIII. Client ID VIII. Lab ID VIII. Sediment VIII. Client ID VIII. Lab ID VIII. Sediment VIII. Client ID VIII. Lab ID VIII. Sediment VIIII. Se		Validation Area			Comm	onte	
III. HRGC/HRMS Instrument performance check III. Initial calibration/ICV IV. Continuing calibration V. Laboratory Blanks VII. Matrix spike/Matrix spike duplicates DAP VIII. Laboratory control samples DAP VIII. System performance XIV. Overall assessment of data Determine DAP VIII. System performance XIV. Overall assessment of data Determine DAP VIII. System performance XIV. Overall assessment of data Determine DAP VIII. System performance XIV. Overall assessment of data Determine DAP VIII. System performance XIV. Overall assessment of data Determine DAP VIII. System performance XIV. Overall assessment of data Determine DAP VIII. System performance XIV. Overall assessment of data Determine DAP VIII. Sediment DAP VIII. Se	1		A		Comm	EIILS	
III. Initial calibration/ICV IV. Continuing calibration W. Laboratory Blanks VI. Field blanks VII. Matrix spike/Matrix spike duplicates OMP IV. Field duplicates IX. Field duplicates X. Internal standards XI. Compound quantitation RL/LOQ/LODs XIII. Target compound identification XIII. System performance XIV. Overall assessment of data te: A = Acceptable N = Field blank Tes = Rinsate FB = Field blank Client ID Lab ID Matrix Date LDW20-SC149 LDW20-SC201B LDW20-SC201B LDW20-SS300 LDW20-SS300 LDW20-SS305 LDW20-SS307 A A A Cellinary A A Sediment O6/25/2 LDW20-SS307 A A A A Cellinary A A Sediment O6/25/2 LDW20-SS307 A A A A Cellinary A A A A A A A A A A A A A A A A A A A			A				
IV. Continuing calibration V. Laboratory Blanks VI. Field blanks VII. Matrix spike/Matrix spike duplicates AP VIII. Laboratory control samples AP IX. Field duplicates IX. Internal standards XI. Compound quantitation RL/LOQ/LODs XII. Target compound identification XIII. System performance XIV. Overall assessment of data te: A = Acceptable N = N = N = N = N = N = N = N = N = N			AA	#S55	20/3570.	rev=	ac limit
V. Laboratory Blanks VI. Field blanks VII. Matrix spike/Matrix spike duplicates DAT NA DATE VIII. Laboratory control samples DATE VIII. Laboratory control samples DATE VIII. Laboratory control samples DATE VIII. Laboratory control samples DATE VIII. Laboratory control samples DATE VIII. Field duplicates X. Internal standards XI. Compound quantitation RL/LOQ/LODs XII. Target compound identification XIII. System performance XIV. Overall assessment of data te: A = Acceptable ND = No compounds detected R = Rinsate FB = Field blank EB = Equipment blank Client ID Lab ID Matrix Date LDW20-SC149 LDW20-SC201B LDW20-SC201B LDW20-SC300 2010211-01 Sediment 06/25// LDW20-SS300 2010211-17 Sediment 06/25// LDW20-SS305 LDW20-SS305 2010211-18 Sediment 06/29// LDW20-SS307		Continuing calibration	au/	CCV			
Will. Matrix spike/Matrix spike duplicates	V.						
No. Field duplicates No. Internal standards Internal standa	VI.	Field blanks	N'			_	
X	VII.	Matrix spike/Matrix spike duplicates	N/A	> * /			
X. Internal standards XI. Compound quantitation RL/LOQ/LODS XII. Target compound identification XIII. System performance XIV. Overall assessment of data	<u>/III.</u>	Laboratory control samples	A/A	LCS			
KI. Compound quantitation RL/LOQ/LODs KII. Target compound identification KIII. System performance KIV. Overall assessment of data BY A = Acceptable N = Not provided/applicable SW = See worksheet KIV. D = No compounds detected R = Rinsate FB = Field blank Client ID Lab ID Matrix Date LDW20-SC149 LDW20-SC201B LDW20-IT300 LDW20-IT300 LDW20-SS300 LDW20-SS300 LDW20-SS300 LDW20-SS305 LDW20-SS307 A = Acceptable ND = No compounds detected R = Rinsate TB = Trip blank EB = Equipment blank Client ID Lab ID Matrix Date 2010211-01 Sediment 06/25/2 2010211-17 Sediment 06/29/2 LDW20-SS307 A = 2010211-18 Sediment 06/29/2 LDW20-SS307	X.	Field duplicates	N				
Climage Clim	X.	Internal standards	A				
System performance System	XI.	Compound quantitation RL/LOQ/LODs	W				
Coverall assessment of data Cove	XII.	Target compound identification	4				
e: A = Acceptable	(III.	System performance	A				
N = Not provided/applicable SW = See worksheet R = Rinsate FB = Field blank TB = Trip blank EB = Equipment blank OTHER: Client ID Lab ID Matrix Date LDW20-SC149 2010211-01 Sediment 06/25/2 LDW20-SC201B 2010211-04 Sediment 06/25/2 LDW20-IT300 2010211-05 Sediment 06/25/2 LDW20-SS300 2010211-17 Sediment 06/29/2 LDW20-SS305 2010211-18 Sediment 06/29/2 LDW20-SS307 2010211-19 Sediment 06/29/2	IV.	Overall assessment of data	$\sqrt{1}$				
LDW20-SC149 2010211-01 Sediment 06/25/2 LDW20-SC201B 2010211-04 Sediment 06/25/2 LDW20-IT300 2010211-05 Sediment 06/25/2 LDW20-SS300 2010211-17 Sediment 06/29/2 LDW20-SS305 2010211-18 Sediment 06/29/2 LDW20-SS307 2010211-19 Sediment 06/29/2	e:	N = Not provided/applicable R = Rin	ısate	detected	TB = Trip blank	OTHER:	e blank
LDW20-SC201B 2010211-04 Sediment 06/25/2 LDW20-IT300 2010211-05 Sediment 06/25/2 LDW20-SS300 2010211-17 Sediment 06/29/2 LDW20-SS305 2010211-18 Sediment 06/29/2 LDW20-SS307 2010211-19 Sediment 06/29/2	C	Client ID			Lab ID	Matrix	Date
LDW20-IT300 20I0211-05 Sediment 06/25/2 LDW20-SS300 20I0211-17 Sediment 06/29/2 LDW20-SS305 20I0211-18 Sediment 06/29/2 LDW20-SS307 20I0211-19 Sediment 06/29/2	L	DW20-SC149			2010211-01	Sediment	06/25/20
LDW20-SS300 2010211-17 Sediment 06/29/2 LDW20-SS305 2010211-18 Sediment 06/29/2 LDW20-SS307 2010211-19 Sediment 06/29/2	L	DW20-SC201B	W-2000		2010211-04	Sediment	06/25/20
LDW20-SS305 20I0211-18 Sediment 06/29/2 LDW20-SS307 20I0211-19 Sediment 06/29/2		DW20-IT300			2010211-05	Sediment	06/25/20
LDW20-SS307 20I0211-19 Sediment 06/29/2	L	DW20-SS300			2010211-17	Sediment	06/29/20
	L	DW20-SS305			2010211-18	Sediment	06/29/20
LDW20-SC149DUP 20I0211-01DUP Sediment 06/25/2		DW20-SS307			2010211-19	Sediment	06/29/20
	┵	DW20-SC149DUP			2010211-01DUP	Sediment	06/25/20
	\bot						
	\perp						

VALIDATION FINDINGS CHECKLIST

Page:	Of Z
Reviewer:_	19

Method: HRGC/HRMS Dioxins/Dibenzofurans (EPA Method 1613B)

Validation Area	Yes	No	NA	Findings/Comments
I. Technical holding times				
All technical holding times were met.	1			
Cooler temperature criteria were met.	√			
II. GC/MS Instrument performance check			10.00	
Was PFK exact mass 380.9760 verified?	1			
Were the retention time windows established for all homologues?	1			
Was the chromatographic resolution between 2,3,7,8-TCDD and peaks representing any other unlabeled TCDD isomers \leq 25%?	V			
Is the static resolving power at least 10,000 (10% valley definition)?	1			
Was the mass resolution adequately check with PFK?	1			
Was the presence of 1,2,8,9-TCDD and 1,3,4,6,8-PeCDF verified?	√			
III. Initial calibration and Initial calibration verification				
Was the initial calibration performed at 5 concentration levels?	√			
Were all percent relative standard deviations (%RSD) \leq 20% for unlabeled compounds and \leq 35% for unlabeled compounds?	V			
Did all calibration standards meet the Ion Abundance Ratio criteria?	1			
Was the signal to noise ratio for each target compound and labeled compound \geq 10?	1			
Was an initial calibration verification (ICV) standard analyzed after each initial calibration for each instrument?	1			
Were all ICV concentrations for the unlabeled and labeled compounds within QC limits?	1			
IV. Continuing calibration				
Was a continuing calibration performed at the beginning of each 12-hour period?	1			
Were all continuing calibration concentrations for the unlabeled and labeled compounds within QC limits?	*	V		
Did all continuing calibration standards meet the lon Abundance Ratio criteria?	√	<u> </u>		
V. Blanks				
Was a method blank associated with every sample in this SDG?	√			
Was a method blank performed for each matrix and whenever a sample extraction was performed?	1			
Was there contamination in the method blanks?	V	1		
VI. Field blanks				
Were field blanks identified in this SDG?		1		
Were target compounds detected in the field blanks?			1	
VII. Matrix spike/Matrix spike duplicates				
Were matrix spike (MS) and matrix spike duplicate (MSD) analyzed in this SDG?		1		
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?			1	

VALIDATION FINDINGS CHECKLIST

Page: of of Reviewer:

Validation Area	Yes	No	NA	Findings/Comments
VIII. Laboratory control samples				
Was an LCS analyzed per extraction batch?	√			
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?	1			
IX. Field duplicates				
Were field duplicate pairs identified in this SDG?		1		
Were target compounds detected in the field duplicates?	<u> </u>	<u> </u>	1	
X. Labeled Compounds				
Were labeled compounds within QC limits?	V	4	<u> </u>	
Was the minimum S/N ratio of all labeled compound peaks ≥ 10?	√	<u> </u>	<u> </u>	
XI. Compound quantitation				
Did the laboratory LOQs/RLs meet the QAPP LOQs/RLs?	1			
Were the correct labeled compound, quantitation ion and relative response factor (RRF) used to quantitate the compound?	1			
Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?	1			
XII. Target compound identification				
For 2,3,7,8 substituted congeners with associated labeled standards, were the retention times of the two quantitation peaks within -1 to 3 sec. of the RT of the labeled standard?	√			
For 2,3,7,8 substituted congeners without associated labeled standards, were the relative retention times of the two quantitation peaks within 0.005 time units of the RRT measured in the routine calibration?	1			
For non-2,3,7,8 substituted congeners, were the retention times of the two quantitation peaks within RT established in the performance check solution?	V			
Did selected ion current profile (SICP) contain all characteristic ions listed in Method 1613B, Table 8?	1			
Was the Ion Abundance Ratio for the two quantitation ions within criteria?		1		
Was the signal to noise ratio for each target compound \ge 2.5 and \ge 10 for the labeled compound?	√			,
Does the maximum intensity of each specified characteristic ion coincide within \pm 2 seconds (includes labeled standards)?	√			
For PCDF identification, was any signal (S/N \geq 2.5, at \pm seconds RT) detected in the corresponding PCDPE channel?			1	
Was an acceptable lock mass recorded and monitored?	√			
XIII. System performance				
System performance was found to be acceptable.	√			
XIV. Overall assessment of data				
Overall assessment of data was found to be acceptable.	1			

VALIDATION FINDINGS WORKSHEET

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA Method 1613B)

A. 2,3,7,8-TCDD	F. 1,2,3,4,6,7,8-HpCDD	K. 1,2,3,4,7,8-HxCDF	P. 1,2,3,4,7,8,9-HpCDF	U. Total HpCDD
B. 1,2,3,7,8-PeCDD	G. OCDD	L. 1,2,3,6,7,8-HxCDF	Q. OCDF	V. Total TCDF
C. 1,2,3,4,7,8-HxCDD	H. 2,3,7,8-TCDF	M. 2,3,4,6,7,8-HxCDF	R. Total TCDD	W. Total PeCDF
D. 1,2,3,6,7,8-HxCDD	I. 1,2,3,7,8-PeCDF	N. 1,2,3,7,8,9-HxCDF	S. Total PeCDD	X. Total HxCDF
E. 1,2,3,7,8,9-HxCDD	J. 2,3,4,7,8-PeCDF	O. 1,2,3,4,6,7,8-HpCDF	T. Total HxCDD	Y. Total HpCDF

Notes:	

LDC #: 49590C2

VALIDATION FINDINGS WORKSHEET Continuing Calibration

Page:	of
Reviewer:	4

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA Method 1613B)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

N N/A Was a continuing calibration performed at the beginning of each 12 hour period?

Were all concentrations within method QC limits for unlabeled and labeled compounds?

N N/A Did all continuing calibration standards meet the Ion Abundance Ratio criteria?

#	Date	Standard ID	Compound	conc (ng/mL) Finding %D	Finding Ion Abundance Ratio	Associated Samples	Qualifications
	10/20/20	20/02002	0	582 (45-55)		All (dets)	JAIA
	/ /						7.71

LDC #: 49590C21

VALIDATION FINDINGS WOR/UHEET Blanks

Page: 1 of 1
Reviewer: PG

METHOD: HRGC/HRMS Dioxins (EPA Method 1613B)

Blank extraction date: 10/14/20 Blank analysis date: 10/20/20

Conc. units: ng/kg

Associated samples: All qual U

The state of the s										
Compound	Blank ID		Sample Identification							
	BIJ0365-BLK1	5X								
F	0.280	1.4								
G	1.78	8.9			1					
			-					-		
				:						
			-							

VALIDATION FINDINGS WORKSHEET <u>Compound Quantitation and Reported RLs</u>

Page:	
Reviewer:	PG

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA Method 1613B)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

N N/A N N/A

Were the correct labeled compound, quantitation ions and relative response factors (RRF) used to quantitate the compound? Compound quantitation and RLs were adjusted to reflect all sample dilutions and dry weight factors (if necessary).

#	Date	Sample ID	Finding	Associated Samples	Qualifications
		All	All compounds reported as estimated maximum		Jdets/A
			possible concentration (EMPC) > RL		
		Ø11	All compounds reported as estimated maximum		U/A
			possible concentration (EMPC) < RL		
<u> </u>					
		4	All compounds flagged "X" due to chlorinated		Jdets/A
			diphenyl either interference		

Comments:	See sample calculation verification worksheet for recalculations	
•		

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page:_	_/of_	1
Reviewer:	9	

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA Method 1613B)

The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations:

 $RRF = (A_x)(C_{is})/(A_{is})(C_x)$

average RRF = sum of the RRFs/number of standards

%RSD = 100 * (S/X)

 $\begin{array}{ll} A_x = \text{Area of compound,} & A_{is} = \text{Area of associated internal standard} \\ C_x = \text{Concentration of compound,} & C_{is} = \text{Concentration of internal standard} \\ S = \text{Standard deviation of the RRFs,} & X = \text{Mean of the RRFs} \end{array}$

				Reported	Recalculated	Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compound (Reference Internal Standard)	Average RRF (initial)	Average RRF (initial)	RRF (CS3 std)	RRF (CS3 std)	%RSD	%RSD
1	KAL	-1/-	2,3,7,8-TCDF (¹⁸ C-2,3,7,8-TCDF)	0.8223	0.8223	0.8118	0.8117	6.T.	6.T
		7/1/20	2,3,7,8-TCDD (¹³ C-2,3,7,8-TCDD)	1.2310	1.2310	12126	12125	11.4	11.4
			1,2,3,6,7,8-HxCDD (¹³ C-1,2,3,6,7,8-HxCDD)	09576	0.9576	1.0254	1.0255	10.8	10.8
			1,2,3,4,6,7,8-HpCDD (¹³ C-1,2,4,6,7,8,-HpCDD)	1.1246	1.1246	1.1931	1.1930	12.3	12.3
			OCDF (13C-OCDF)	1.3922	1.3922	1.3628	13627	8.0	3.0
2			2,3,7,8-TCDF (¹³ C-2,3,7,8-TCDF)						
			2,3,7,8-TCDD (¹³ C-2,3,7,8-TCDD)						
			1,2,3,6,7,8-HxCDD (¹³ C-1,2,3,6,7,8-HxCDD)						
			1,2,3,4,6,7,8-HpCDD (¹³ C-1,2,4,6,7,8,-HpCDD)						
			OCDF (13C-OCDF)						
3			2,3,7,8-TCDF (¹³ C-2,3,7,8-TCDF)						
			2,3,7,8-TCDD (¹³ C-2,3,7,8-TCDD)						
			1,2,3,6,7,8-HxCDD (¹³ C-1,2,3,6,7,8-HxCDD)						
			1,2,3,4,6,7,8-HpCDD (¹³ C-1,2,4,6,7,8,-HpCDD)						
			OCDF (13C-OCDF)						

Comments:	Refer to Initial Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated
results.	

VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification

Page:_	
Reviewer:_	9_

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA Method 1613B)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF

Where: ave. RRF = initial calibration average RRF

 $RRF = (A_x)(C_{is})/(A_{is})(C_x)$

RRF = continuing calibration RRF

A_{is} = Area of associated internal standard

 A_x = Area of compound, C_x = Concentration of compound, C_{is} = Concentration of internal standard

					Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compound (Reference Internal Standard)	Average RRF (initial)	Conc (CC)	Conc (CC)	%D	%D
1	20/02002	10/20/20	2,3,7,8-TCDF (¹³ C-2,3,7,8-TCDF)	0.8-223	0.8766	0.8766	6.6	6.6
		10/20	2,3,7,8-TCDD (¹³ C-2,3,7,8-TCDD)	1.2310	æ1.3090	1.3090	6.3	6.3
			1,2,3,6,7,8-HxCDD (¹³ C-1,2,3,6,7,8-HxCDD)	0.9576	0.9087	0.908T	5.	5.
			1,2,3,4,6,7,8-HpCDD (¹³ C-1,2,4,6,7,8,-HpCDD)	1.1246	1.1710	1.1710	4.1	4.1
			OCDF (13C-OCDF)	1.3922	1.4666	1.4666	5.3	4.1
2			2,3,7,8-TCDF (¹³ C-2,3,7,8-TCDF)					
			2,3,7,8-TCDD (¹³ C-2,3,7,8-TCDD)					
			1,2,3,6,7,8-HxCDD (¹³ C-1,2,3,6,7,8-HxCDD)					
			1,2,3,4,6,7,8-HpCDD (¹³ C-1,2,4,6,7,8,-HpCDD)					
			OCDF (13C-OCDF)					
3			2,3,7,8-TCDF (¹³ C-2,3,7,8-TCDF)					
			2,3,7,8-TCDD (¹³ C-2,3,7,8-TCDD)					
			1,2,3,6,7,8-HxCDD (¹³ C-1,2,3,6,7,8-HxCDD)					
			1,2,3,4,6,7,8-HpCDD (¹³ C-1,2,4,6,7,8,-HpCDD)					
			OCDF (13C-OCDF)					

Comments: Refer to Routine Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

VALIDATION FINDINGS WORKSHEET Laboratory Control Sample Results Verification

Page:_	
Reviewer:	9

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA Method 1613B)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratoy control sample and laboratory control sample duplicate (if applicable) were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * SSC/SA

Where: SSC = Spiked sample concentration

SA = Spike added

RPD = I LCS - LCSD I * 2/(LCS + LCSD)

LCS = Laboraotry control sample percent recovery

LCSD = Laboratory control sample duplicate percent recovery

LCS ID: BITO365-BS

Compound	Ad	oike ded	Spiked S Concen	tration	L C		L C:			I CSD
	LCS	LCSD	LCS	LCSD	Reported	Recalc	Reported	Recalc	Reported	Recalculated
2,3,7,8-TCDD	20.0	NA	220	NX	110	110				
1,2,3,7,8-PeCDD	100		104		lot	104				
1,2,3,4,7,8-HxCDD	1		100		104	104				
1,2,3,4,7,8,9-HpCDF	V		118		118	118				
OCDF	200	V	229	V	114	114				

Comments:	Refer to Laboratory	<u>/ Control Sample findin</u>	gs worksheet for lis	<u>t of qualifications a</u>	<u>nd associated sa</u>	mples when reporte	<u>ed results do not agr</u>	ee within 10.09	<u>% of the</u>
recalculated	results.								
									

LDC #: 49590<

VALIDATION FINDINGS WORKSHEET

Sample Calculation Verification

Page:_	of
Reviewer:	9

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA Method 1613B)

YN N/A YN N/A Were all reported results recalculated and verified for all level IV samples?

Were all recalculated results for detected target compounds agree within 10.0% of the reported results?

Concer	itration	$n = (A_s)(I_s)(DF)$ $(A_s)(RRF)(V_o)(\%S)$	
A_{x}	=	Area of the characteristic ion (EICP) for the compound to be measured	
A_is	=	Area of the characteristic ion (EICP) for the specific internal standard	
Is	=	Amount of internal standard added in nanograms (ng)	
V _o	=	Volume or weight of sample extract in milliliters (ml) or grams (g).	
RRF	=	Relative Response Factor (average) from the initial calibration	
Df	=	Dilution Factor.	
%S	=	Percent solids, applicable to soil and solid matrices only.	

Example:	
Sample I.D	; :
Conc. = ()	16e4+2419e4, (1000)(20) 19e4 45.05e4)(1/246)(4.53)(0.6916)

= 83.9 ns/s

#	Sample ID	Compound	Reported Concentration	Calculated Concentration	Acceptable (Y/N)
		F	83.9		

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Duwamish AOC4

LDC Report Date:

November 16, 2020

Parameters:

Semivolatiles

Validation Level:

Stage 2B

Laboratory:

Analytical Resources, Inc.

Sample Delivery Group (SDG): 2010216

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
LDW20-IT263	2010216-06	Sediment	06/11/20
LDW20-IT263MS	2010216-06MS	Sediment	06/11/20
LDW20-IT263MSD	2010216-06MSD	Sediment	06/11/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Lower Duwamish Waterway Quality Assurance Project Plan for Remedial Design of Upper Reach: Pre-Design Investigation (May 2020) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Semivolatile Organic Compounds (SVOCs) by Environmental Protection Agency (EPA) SW 846 Method 8270E

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

A decafluorotriphenylphosphine (DFTPP) tune was performed at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0% for all compounds.

Average relative response factors (RRF) for all compounds were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 30.0% for all compounds.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all compounds.

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks with the following exceptions:

Blank ID	Extraction Date			Associated Samples
BII0798-BLK1	09/30/20	Butylbenzylphthalate	13.8 ug/Kg	All samples in SDG 2010216

Sample concentrations were compared to concentrations detected in the laboratory blanks. The sample concentrations were either not detected or were significantly greater than the concentrations found in the associated laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Compound	MS (%R) (Limits)	MSD (%R) (Limits)	Flag	A or P
LDW20-IT263MS/MSD (LDW20-IT263)	Bis(2-ethylhexyl)phthalate	-	138 (34-130)	J (all detects)	А

Relative percent differences (RPD) were within QC limits.

IX. Laboratory Control Samples/Standard Reference Materials

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

Standard reference materials (SRM) were analyzed as required by the method. The results were within QC limits.

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Internal Standards

All internal standard areas and retention times were within QC limits with the following exceptions:

Sample	Internal Standards	Area (Limits)	Affected Compound	Flag	A or P
LDW20-IT263	Perylene-d12 Di-n-octylphthalate-d4	184177 (195564.5-782258) 280059 (283187.5-1132750)	Bis(2-ethylhexyl)phthalate Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenzo(a,h)anthracene Benzo(g,h,i)perylene Benzofluoranthenes, total	J (all detects) J (all detects) J (all detects) J (all detects) J (all detects) J (all detects) J (all detects)	А

XII. Compound Quantitation

Raw data were not reviewed for Stage 2B validation.

XIII. Target Compound Identifications

Raw data were not reviewed for Stage 2B validation.

XIV. System Performance

Raw data were not reviewed for Stage 2B validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Due to MS/MSD %R, and internal standard area, data were qualified as estimated in one sample.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable.

Duwamish AOC4 Semivolatiles - Data Qualification Summary - SDG 2010216

Sample	Compound	Flag	A or P	Reason
LDW20-IT263	Bis(2-ethylhexyl)phthalate	J (all detects)	А	Matrix spike/Matrix spike duplicate (%R)
LDW20-IT263	Bis(2-ethylhexyl)phthalate Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenzo(a,h)anthracene Benzo(g,h,i)perylene Benzofluoranthenes, total	J (all detects) J (all detects) J (all detects) J (all detects) J (all detects) J (all detects) J (all detects)	А	Internal standards (area)

Duwamish AOC4

Semivolatiles - Laboratory Blank Data Qualification Summary - SDG 2010216

No Sample Data Qualified in this SDG

Duwamish AOC4

Semivolatiles - Field Blank Data Qualification Summary - SDG 2010216

No Sample Data Qualified in this SDG

SDG #	#:49590D2aVALIDATIO #:2010216 atory:_Analytical Resources, Inc.		LETENES tage 2B	S WORKSHEET		Date: <u>/// 9/2</u> Page: _/ of // eviewer: eviewer: _A	
The sa	IOD: GC/MS Semivolatiles (EPA SW 846 amples listed below were reviewed for eation findings worksheets.		·	ation areas. Validatio			
	Validation Area			Comm	nents		
I.	Sample receipt/Technical holding times	A					
Ħ.	GC/MS Instrument performance check	₹					
III.	Initial calibration/ICV	A,A	RSO-	< 20/o . /	e1=30)	>	
IV.	Continuing calibration	A	av=	20%	/		
V.	Laboratory Blanks	W		l			
VI.	Field blanks	$ \mathcal{N} $					
VII.	Surrogate spikes	A					
VIII.	Matrix spike/Matrix spike duplicates	m					
IX.	Laboratory control samples	AA	BRM				
Χ.	Field duplicates	N					
XI.	Internal standards	W	·				
XII.	Compound quantitation RL/LOQ/LODs	N		<u> </u>	<u>-</u>		
XIII.	Target compound identification	N					
XIV.	System performance	N					
XV.	Overall assessment of data	A					
Note:	N = Not provided/applicable R = Rin	o compounds sate eld blank	detected	D = Duplicate TB = Trip blank EB = Equipment blar	SB=Sourc OTHER: nk	e blank	
	Client ID	-	-	Lab ID	Matrix	Date	
1	LDW20-IT263			2010216-06	Sediment	06/11/20	
2	LDW20-IT263MS			2010216-06MS	Sediment	06/11/20	
3	LDW20-IT263MSD	2010216-06MSD	Sediment	06/11/20			
4							
5							
6							
7							
8							
9							
lotes:							
đ	3110798						

VALIDATION FINDINGS WORKSHEET

METHOD: GC/MS SVOA

A. Phenoi	AA. 2-Chloronaphthalene	AAA. Butylbenzylphthalate	AAAA. Dibenzothiophene	A1.Dibenz(a,h)+(a,c)anthracene
B. Bis (2-chloroethyl) ether	BB. 2-Nitroaniline	BBB. 3,3'-Dichlorobenzidine	BBBB. Benzo(a)fluoranthene	B1.Benzo(j)fluoranthene
C. 2-Chlorophenol	CC. Dimethylphthalate	CCC. Benzo(a)anthracene	CCCC. Benzo(b)fluorene	C1.Benzo(b)naphtho(2,1-d)thiophene
D. 1,3-Dichlorobenzene	DD. Acenaphthylene	DDD. Chrysene	DDDD. cis/trans-Decalin	D1.
E. 1,4-Dichlorobenzene	EE. 2,6-Dinitrotoluene	EEE. Bis(2-ethylhexyl)phthalate	EEEE. Biphenyl	E1.
F. 1,2-Dichlorobenzene	FF. 3-Nitroaniline	FFF. Di-n-octylphthalate	FFFF. Retene	F1.
G. 2-Methylphenoi	GG. Acenaphthene	GGG. Benzo(b)fluoranthene	GGGG. C30-Hopane	G1.
H. 2,2'-Oxybis(1-chloropropane)	HH. 2,4-Dinitrophenol	HHH. Benzo(k)fluoranthene	HHHH. 1-Methylphenanthrene	H1.
I. 4-Methylphenol	II. 4-Nitrophenol	III. Benzo(a)pyrene	IIII. 1,4-Dioxane	11.
J. N-Nitroso-di-n-propylamine	JJ. Dibenzofuran	JJJ. Indeno(1,2,3-cd)pyrene	JJJJ. Acetophenone	J1.
K. Hexachloroethane	KK. 2,4-Dinitrotoluene	KKK. Dibenz(a,h)anthracene	KKKK. Atrazine	K1.
L. Nitrobenzene	LL. Diethylphthalate	LLL. Benzo(g,h,i)perylene	LLLL. Benzaldehyde	L1.
M. Isophorone	MM. 4-Chlorophenyl-phenyl ether	MMM. Bis(2-Chloroisopropyl)ether	MMMM. Caprolactam	M1.
N. 2-Nitrophenol	NN. Fluorene	NNN. Aniline	NNNN. 2,6-Dichlorophenol	N1.
O. 2,4-Dimethylphenol	OO. 4-Nitroaniline	OOO. N-Nitrosodimethylamine	OOOO. 1,2-Diphenylhydrazine	01.
P. Bis(2-chloroethoxy)methane	PP. 4,6-Dinitro-2-methylphenol	PPP. Benzoic Acid	PPPP. 3-Methylphenol	P1.
Q. 2,4-Dichlorophenol	QQ. N-Nitrosodiphenylamine	QQQ. Benzyl alcohol	QQQQ. 3&4-Methylphenol	Q1.
R. 1,2,4-Trichlorobenzene	RR. 4-Bromophenyl-phenylether	RRR. Pyridine	RRRR. 4-Dimethyldibenzothiophene (4MDT)	R1.
S. Naphthalene	SS. Hexachlorobenzene	SSS. Benzidine	SSSS. 2/3-Dimethyldibenzothiophene (4MDT)	S1.
T. 4-Chloroaniline	TT. Pentachlorophenol	TTT. 1-Methylnaphthalene	TTTT. 1-Methyldibenzothiophene (1MDT)	T1.
U. Hexachlorobutadiene	UU. Phenanthrene	UUU.Benzo(b)thiophene	UUUU. 2,3,4,6-Tetrachlorophenol	U1.
V. 4-Chloro-3-methylphenol	VV. Anthracene	VVV.Benzonaphthothiophene	VVVV. 1,2,4,5-Tetrachlorobenzene	V1.
W. 2-Methylnaphthalene	WW. Carbazole	WWW.Benzo(e)pyrene	WWWW. Chrysene/Triphenylene	W1.
X. Hexachlorocyclopentadiene	XX. Di-n-butylphthalate	XXX. 2,6-Dimethylnaphthalene	XXXX.Benzo(j)+(k)fluoranthene	X1.
Y. 2,4,6-Trichlorophenol	YY. Fluoranthene	YYY. 2,3,5-Trimethylnaphthalene	YYYY. Naphthobenzophiophene	Y1.
Z. 2,4,5-Trichlorophenol	ZZ. Pyrene	ZZZ. Perylene	ZZZZ.Benzofluoranthenes, Total	Z1.

VALIDATION FINDINGS WORKSHEET Blanks

Page:_	of	1
Reviewer:	9	

METHOD: GC/MS BNA (EPA SW 846 Method 8270D)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Was a method blank analyzed for each matrix?

V N N/A Was a method blank analyzed for each concentration preparation level?

A/N N/Y Was a method blank associated with every sample?

Conc. units: MS/45	Associated Samples:	A11

Compound	Blank ID		Sample Identification						
BI:	0798-B	K/							
AAA	13.8								
	,								

Blank extraction date:	Blank analysis date:_			
Conc. units:		Associated Samples:		
Compound	Blank ID		Sample Identification	

Compound	Blank ID	Sample Identification							

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT:

Common contaminants such as the phthalates and TICs noted above that were detected in samples within ten times the associated method blank concentration were qualified as not detected, "U". Other contaminants within five times the method blank concentration were also qualified as not detected, "U".

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates

Page:_	
Reviewer:_	9

METHOD: GC/MS BNA (EPA SW 846 Method 8270D)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated

MS/MSD. Soil / Water.

N/A Was a MS/MSD analyzed every 20 samples of each matrix?

Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?

2/3 222	#	MS/MSD ID	Compound	MS %R (Limits)		MSD %R (Limits)		RPD (Limits)	Associated Samples	Qualifications
		2/3	222	() /.	38 (34	430	()	1 (dot3)	Hots/A
		/		()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				(<u> </u>					
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
	\vdash			()	()	()		
				()	(()		
					+		+	(
	\vdash			(' -	(()	 	
	-			() -	(- ,	i		
	\vdash			(/ -	(
				(1		- '-	()		
	 			(\ 			()		
	\vdash			(+	(()		
	\vdash			(/ -			()		
				(\			()		

VALIDATION FINDINGS WORKSHEET Internal Standards

Page:_	of
Reviewer:_	4
d Reviewer:	

METHOD: GC/MS BNA (EPA SW 846 Method 8270D)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Were all internal standard area counts within -50 to +100 of the associated calibration standard?

Were the retention times of the internal standards within +/- 30 seconds of the retention times of the associated calibration standard?

#	Date	Sample ID ,	Internal Standard	Area (Limits)	RT (Limits)	Qualifications
		1 (dets/	PRY FFF-d4	184177(1955645-782 280059(2831875-11327	58)	JUN X HEXX
		2(MS)	PRY FFF-d4	1748671	 	No Conal
		7 (116 =)				
		3 (MSD)	PRY PFF-d4	165980 (3	
				•		_
						* gual EZE, 11/
						Z22Z
						+
						-

(DCB) = 1,4-Dichlorobenzene-d4

(NPT) = Naphthalene-d8 (ANT) = Acenaphthene-d10 (PHN) = Phenanthrene-d10 (CRY) = Chrysene-d12

(PRY) = Perylene-d12

FFF-24 = Di-n-Octy/fhthalate -d +

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Duwamish AOC4

LDC Report Date: November 16, 2020

Parameters: Semivolatiles

Validation Level: Stage 2B

Laboratory: Analytical Resources, Inc.

Sample Delivery Group (SDG): 2010216

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
LDW20-IT373	2010216-01	Sediment	06/10/20
LDW20-IT263	2010216-06	Sediment	06/11/20
LDW20-IT258	2010216-13	Sediment	06/12/20
LDW20-IT382	2010216-20	Sediment	06/17/20
LDW20-IT373MS	2010216-01MS	Sediment	06/10/20
LDW20-IT373MSD	20I0216-01MSD	Sediment	06/10/20
LDW20-IT263MS	2010216-06MS	Sediment	06/11/20
LDW20-IT263MSD	20I0216-06MSD	Sediment	06/11/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Lower Duwamish Waterway Quality Assurance Project Plan for Remedial Design of Upper Reach: Pre-Design Investigation (May 2020) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Semivolatile Organic Compounds (SVOCs) by Environmental Protection Agency (EPA) SW 846 Method 8270E in Selected Ion Monitoring (SIM) mode

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

A decafluorotriphenylphosphine (DFTPP) tune was performed at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

For compounds where average relative response factors (RRFs) were utilized, percent relative standard deviations (%RSD) were less than or equal to 20.0%.

In the case where the laboratory used a calibration curve to evaluate the compounds, all coefficients of determination (r^2) were greater than or equal to 0.990.

Average relative response factors (RRF) for all compounds were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 30.0% for all compounds.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all compounds with the following exceptions:

Date	Compound	%D	Associated Samples	Flag	A or P
10/06/20	Indeno(1,2,3-cd)pyrene Dibenzo(a,h)anthracene	30.4 30.2	LDW20-IT373 LDW20-IT258 LDW20-IT382	J (all detects) J (all detects)	A
10/13/20	Benzoic acid Pentachlorophenol	30.4 23.7	LDW20-IT263	J (all detects) J (all detects)	А

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks with the following exceptions:

Blank ID	Extraction Date	Compound	Concentration	Associated Samples
BII0800-BLK1	09/30/20	Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenzo(a,h)anthracene	1.10 ug/Kg 1.11 ug/Kg 2.07 ug/Kg 2.02 ug/Kg 2.09 ug/Kg 4.91 ug/Kg 4.56 ug/Kg	LDW20-IT373 LDW20-IT258 LDW20-IT382

Sample concentrations were compared to concentrations detected in the laboratory blanks. The sample concentrations were either not detected or were significantly greater than the concentrations found in the associated laboratory blanks with the following exceptions:

Sample	Compound	Reported Concentration	Modified Final Concentration
LDW20-IT382	Dibenzo(a,h)anthracene	4.39 ug/Kg	4.39U ug/Kg

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Compound	MS (%R) (Limits)	MSD (%R) (Limits)	Flag	A or P
LDW20-IT263MS/MSD (LDW20-IT263)	N-Nitrosodiphenylamine	-	122 (27-120)	NA	-

Relative percent differences (RPD) were within QC limits.

IX. Laboratory Control Samples/Standard Reference Materials

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits with the following exceptions:

LCS ID	Compound	%R (Limits)	Associated Samples	Flag	A or P
BII0798-BS2	N-Nitrosodiphenylamine	123 (27-120)	LDW20-IT263	NA	-

Standard reference materials (SRM) were analyzed as required by the method. The results were within QC limits.

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Compound Quantitation

Raw data were not reviewed for Stage 2B validation.

XIII. Target Compound Identifications

Raw data were not reviewed for Stage 2B validation.

XIV. System Performance

Raw data were not reviewed for Stage 2B validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Due to continuing calibration %D, data were qualified as estimated in four samples.

Due to laboratory blank contamination, data were qualified as not detected in one sample.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable.

Duwamish AOC4 Semivolatiles – Data Qualification Summary - SDG 2010216

Sample	Compound	Flag	A or P	Reason
LDW20-IT373 LDW20-IT258 LDW20-IT382	Indeno(1,2,3-cd)pyrene Dibenzo(a,h)anthracene	J (all detects) J (all detects)	A	Continuing calibration (%D)
LDW20-IT263	Benzoic acid Pentachlorophenol	J (all detects) J (all detects)	А	Continuing calibration (%D)

Duwamish AOC4 Semivolatiles - Laboratory Blank Data Qualification Summary - SDG 2010216

Sample	Compound	Modified Final Concentration	A or P
LDW20-IT382	Dibenzo(a,h)anthracene	4.39U ug/Kg	Α

Duwamish AOC4
Semivolatiles - Field Blank Data Qualification Summary - SDG 2010216

No Sample Data Qualified in this SDG

LDC #: 49590D2b						Date: <i><u>//</u>///</i> Page: <u>/</u> _/of/	
	atory: <u>Analytical Resources, Inc.</u> OD: GC/MS Polynuclear Aromatic Hy		Reviewer:				
Γhe sa	amples listed below were reviewed for ion findings worksheets.				n findings are	noted in attache	
	Validation Area			Comme	ents		
1.	Sample receipt/Technical holding times	A					
11.	GC/MS Instrument performance check	A					
III.	Initial calibration/ICV	AIA	R505	20/0 1/2 1C)	(< 30)	0	
IV.	Continuing calibration	M	COV =	20/0			
V.	Laboratory Blanks	W					
VI.	Field blanks	\mathcal{N}					
VII.	Surrogate spikes						
VIII.	Matrix spike/Matrix spike duplicates	M/					
IX.	Laboratory control samples /SRM	A/A	105.				
X.	Field duplicates	1/1					
XI.	Internal standards	A					
XII.	Compound quantitation RL/LOQ/LODs	N					
XIII.	Target compound identification	N					
XIV.	System performance	N					
XV.	Overall assessment of data	A					
Note:	ote: A = Acceptable ND = No compounds detected D = Duplicate SB=Source blank N = Not provided/applicable R = Rinsate TB = Trip blank OTHER: SW = See worksheet FB = Field blank EB = Equipment blank						
	Client ID			Lab ID	Matrix	Date	
<u> 1 1</u>	_DW20-IT373			2010216-01	Sediment	06/10/20	
221	_DW20-IT263			2010216-06	Sediment	06/11/20	
3 / 1	_DW20-IT258	2010216-13	Sediment	06/12/20			
4 1 1	_DW20-IT382	2010216-20	Sediment	06/17/20			
5 l	_DW20-IT373MS	2010216-01MS	Sediment	06/10/20			
6 l	_DW20-IT373MSD	2010216-01MSD	Sediment	06/10/20			
7 L	DW20-IT263MS	20I0216-06MS	Sediment	06/11/20			
8 L	_DW20-IT263MSD	2010216-06MSD	Sediment	06/11/20			
9							
lotes:							

VALIDATION FINDINGS WORKSHEET

METHOD: GC/MS SVOA

				T
A. Phenol	AA. 2-Chloronaphthalene	AAA. Butylbenzylphthalate	AAAA. Dibenzothiophene	A1.Dibenz(a,h)+(a,c)anthracene
B. Bis (2-chloroethyl) ether	BB. 2-Nitroaniline	BBB. 3,3'-Dichlorobenzidine	BBBB. Benzo(a)fluoranthene	B1.Benzo(j)fluoranthene
C. 2-Chlorophenol	CC. Dimethylphthalate	CCC. Benzo(a)anthracene	CCCC. Benzo(b)fluorene	C1.Benzo(b)naphtho(2,1-d)thiophene
D. 1,3-Dichlorobenzene	DD. Acenaphthylene	DDD. Chrysene	DDDD. cis/trans-Decalin	D1.
E. 1,4-Dichlorobenzene	EE. 2,6-Dinitrotoluene	EEE. Bis(2-ethylhexyl)phthalate	EEEE. Biphenyl	E1.
F. 1,2-Dichlorobenzene	FF. 3-Nitroaniline	FFF. Di-n-octylphthalate	FFFF. Retene	F1.
G. 2-Methylphenol	GG. Acenaphthene	GGG. Benzo(b)fluoranthene	GGGG. C30-Hopane	G1.
H. 2,2'-Oxybis(1-chloropropane)	HH. 2,4-Dinitrophenol	HHH. Benzo(k)fluoranthene	HHHH. 1-Methylphenanthrene	H1.
I. 4-Methylphenol	II. 4-Nitrophenol	III. Benzo(a)pyrene	IIII. 1,4-Dioxane	11.
J. N-Nitroso-di-n-propylamine	JJ. Dibenzofuran	JJJ. Indeno(1,2,3-cd)pyrene	JJJJ. Acetophenone	J1.
K. Hexachloroethane	KK. 2,4-Dinitrotoluene	KKK. Dibenz(a,h)anthracene	KKKK. Atrazine	K1.
L. Nitrobenzene	LL. Diethylphthalate	LLL. Benzo(g,h,i)perylene	LLLL. Benzaldehyde	L1.
M. Isophorone	MM. 4-Chlorophenyl-phenyl ether	MMM. Bis(2-Chloroisopropyl)ether	MMMM. Caprolactam	M1.
N. 2-Nitrophenol	NN. Fluorene	NNN. Aniline	NNNN. 2,6-Dichlorophenol	N1.
O. 2,4-Dimethylphenol	OO. 4-Nitroaniline	OOO. N-Nitrosodimethylamine	OOOO. 1,2-Diphenylhydrazine	01.
P. Bis(2-chloroethoxy)methane	PP. 4,6-Dinitro-2-methylphenol	PPP. Benzoic Acid	PPPP. 3-Methylphenol	P1.
Q. 2,4-Dichlorophenol	QQ. N-Nitrosodiphenylamine	QQQ. Benzyl alcohol	QQQQ. 3&4-Methylphenol	Q1.
R. 1,2,4-Trichlorobenzene	RR. 4-Bromophenyl-phenylether	RRR. Pyridine	RRRR. 4-Dimethyldibenzothiophene (4MDT)	R1.
S. Naphthalene	SS. Hexachlorobenzene	SSS. Benzidine	SSSS. 2/3-Dimethyldibenzothiophene (4MDT)	S1.
T. 4-Chloroaniline	TT. Pentachlorophenol	TTT. 1-Methylnaphthalene	TTTT. 1-Methyldibenzothiophene (1MDT)	T1.
U. Hexachlorobutadiene	UU. Phenanthrene	UUU.Benzo(b)thiophene	UUUU. 2,3,4,6-Tetrachlorophenol	U1.
V. 4-Chloro-3-methylphenol	VV. Anthracene	VVV.Benzonaphthothiophene	VVVV. 1,2,4,5-Tetrachlorobenzene	V1.
W. 2-Methylnaphthalene	WW. Carbazole	WWW.Benzo(e)pyrene	WWWW. Chrysene/Triphenylene	W1.
X. Hexachlorocyclopentadiene	XX. Di-n-butylphthalate	XXX. 2,6-Dimethylnaphthalene	XXXX.Benzo(j)+(k)fluoranthene	X1.
Y. 2,4,6-Trichlorophenol	YY. Fluoranthene	YYY. 2,3,5-Trimethylnaphthalene	YYYY. Naphthobenzophiophene	Y1.
Z. 2,4,5-Trichlorophenol	ZZ. Pyrene	ZZZ. Perylene	ZZZZ.Benzofluoranthenes, Total	Z1.

VALIDATION FINDINGS WORKSHEET Continuing Calibration

METHOD: GC/MS BNA (EPA SW 846 Method 8270D)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

N.N/A

Was a continuing calibration standard analyzed at least once every 12 hours for each instrument. Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?

Y/N N/A Were percent differences (%D) ≤20 % and relative response factors (RRF) within the method criteria?

#	Date	Standard ID	Compound	Finding %D (Limit: <u><</u> 20.0%)	Finding RRF (Limit)	Associated Samples	Qualifications
	19/6/20	NT820/0067	HI KK	30.4 30.2		1,3-4.7-8.MB (Asts)	JW/A
			- KKN	<u> </u>		(1005)	
	10/13/20	NT1020101315S	17P 77	30.4		2.45. MB (AdS)	July A
			TT	23.7		(dets)	/ ob
L		L			<u> </u>		

VALIDATION FINDINGS WORKSHEET Blanks

Page:_	/of /	
Reviewer:		

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Was a method blank analyzed for each matrix?

Was a method blank analyzed for each concentration preparation level?

Ý)N N/A Was a method blank associated with every sample?

Was the blank contaminated? If yes, please see qualification below.

Blank extraction date: 93/20 Blank analysis date: 9/4/20 Conc. units: W5/63

ssociated Samples:	AIL	1.34
oooolatoa campioo.	X// **	1 2

Compound	Blank iD	Sample Identification							
BI	0800-B	k /	4						
	1.10								
000 000 669	1.11								
444	2.07								
AHH	2.02								
///	2.09								
W	4.91								
KKK	4.50		439/11						

Blank extraction date:	Blank analysis date:
Conc. units:	Associated Samples:

Compound	Blank ID	Sample Identification						

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT:

Common contaminants such as the phthalates and TICs noted above that were detected in samples within ten times the associated method blank concentration were qualified as not detected, "U". Other contaminants within five times the method blank concentration were also qualified as not detected, "U".

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates

Page:_	<u>/of/</u>
Reviewer:	/

METHOD: GC/MS BNA (EPA SW 846 Method 8270D)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated

MS/MSD. Soil / Water.

N N/A Was a MS/MSD analyzed every 20 samples of each matrix?

Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?

#	MS/MSD ID	Compound	MS %R (Limits)		MSD 6R (Limits)		RPD (Limits)	Associated Samples	Qualifications
	7/8	88	() /22	(27-1	(05)	()	2 (ND)	LAS/A
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()	<u> </u>	
			()	()	()		
			()	(()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
	····		()	()	()	<u> </u>	
				}		-} +	()		
			()	()	()		
			()	()	()		
			()	()	()		
$\sqcup \bot$			()	()	()		
			()	()	()		
			()	()	()	<u> </u>	
			()	()	()		
			()	()	()		
			()			()	<u> </u>	

VALIDATION FINDINGS WORKSHEET Laboratory Control Samples (LCS)

Page: _	<u>_</u> of
Reviewer:	<u>a</u>
2nd Reviewer:	

METHOD: GC/MS BNA (EPA SW 846 Method 8270D)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Was a LCS required?

Y(N)N/A

Were the LCS/LCSD p

Were the LCS/LCSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?

#	Date	LCS/LCSD ID	Compound	LCS %R (Limits)	LCSD %R (Limits)	RPD (Limits)	Associated Samples	Qualifications
		BIIO798-BS	RR	123 (27-120)	()	()		LUE/P
		,		()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				. ()	()	_()		

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Duwamish AOC4

LDC Report Date:

November 11, 2020

Parameters:

Hexachlorobenzene

Validation Level:

Stage 2B

Laboratory:

Analytical Resources, Inc.

Sample Delivery Group (SDG): 2010216

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
LDW20-IT263	2010216-06	Sediment	06/11/20
LDW20-IT263MS	2010216-06MS	Sediment	06/11/20
LDW20-IT263MSD	2010216-06MSD	Sediment	06/11/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Lower Duwamish Waterway Quality Assurance Project Plan for Remedial Design of Upper Reach: Pre-Design Investigation (May 2020) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Hexachlorobenzene by Environmental Protection Agency (EPA) SW 846 Method 8081B

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC Instrument Performance Check

Instrument performance was checked at 12 hour intervals.

The individual 4,4'-DDT and Endrin breakdowns (%BD) were less than or equal to 15.0%.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0%.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0%.

IV. Continuing Calibration

Continuing calibration was performed at required frequencies.

The percent differences (%D) were less than or equal to 20.0%.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates/Internal Standards

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

All internal standard areas and retention times were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Compound Quantitation

Raw data were not reviewed for Stage 2B validation.

XII. Target Compound Identification

Raw data were not reviewed for Stage 2B validation.

XIII. System Performance

Raw data were not reviewed for Stage 2B validation.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

The quality control criteria reviewed were met and are considered acceptable.

Duwamish AOC4
Hexachlorobenzene - Data Qualification Summary - SDG 2010216

No Sample Data Qualified in this SDG

Duwamish AOC4
Hexachlorobenzene - Laboratory Blank Data Qualification Summary - SDG 2010216

No Sample Data Qualified in this SDG

Duwamish AOC4 Hexachlorobenzene - Field Blank Data Qualification Summary - SDG 20I0216

No Sample Data Qualified in this SDG

SDG # _abora	t: 49590D3a VALIDATIO t: 2010216 atory: Analytical Resources, Inc. IOD: GC Hexachlorobenzene (EPA SW8	St	age 2B	S WORKSHEET		Date: ///9/2 Page: _/of / Leviewer:
The sa	amples listed below were reviewed for eation findings worksheets.		•	lation areas. Validatio	on findings are r	noted in attache
	Validation Area			Comm	ents	
I.	Sample receipt/Technical holding times	A				
II.	GC Instrument Performance Check	A				
III.	Initial calibration/ICV	AA	R50	× 20/0		
IV.	Continuing calibration	A				
V.	Laboratory Blanks	A	·			
VI.	Field blanks	N				
VII.	Surrogate spikes / 15	A				
VIII.	Matrix spike/Matrix spike duplicates	A				
IX.	Laboratory control samples	A	109			
Χ.	Field duplicates	\mathbb{A}				
XI.	Compound quantitation/RL/LOQ/LODs	N				
XII.	Target compound identification	N				
XIII.	System Performance	N				
XIV	Overall assessment of data	IAI				
lote:	N = Not provided/applicable R = Rin	o compounds sate eld blank	detected	D = Duplicate TB = Trip blank EB = Equipment blan	SB=Sourd OTHER: k	ce blank
	Client ID			Lab ID	Matrix	Date
1 L	_DW20-IT263			2010216-06	Sediment	06/11/20
2 l	LDW20-IT263MS			2010216-06MS	Sediment	06/11/20
	LDW20-IT263MSD			2010216-06MSD	Sediment	06/11/20
4						
5						
6						
7						
8		··········				
9						
10						
lotes:						
1	\		1 1		1 1	

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Duwamish AOC4

LDC Report Date:

November 16, 2020

Parameters:

Polychlorinated Biphenyls

Validation Level:

Stage 2B

Laboratory:

Analytical Resources, Inc.

Sample Delivery Group (SDG): 2010216

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
LDW20-IT373	2010216-01	Sediment	06/10/20
LDW20-SC238A	2010216-02	Sediment	06/10/20
LDW20-SC235A	2010216-03	Sediment	06/10/20
LDW20-SC250A	2010216-04	Sediment	06/10/20
LDW20-IT252	2010216-05	Sediment	06/11/20
LDW20-IT263	2010216-06	Sediment	06/11/20
LDW20-SC269A	2010216-07	Sediment	06/11/20
LDW20-SC261A	2010216-08	Sediment	06/11/20
LDW20-SC255A	2010216-09	Sediment	06/11/20
LDW20-SC245A	2010216-10	Sediment	06/11/20
LDW20-SS271	2010216-11	Sediment	06/12/20
LDW20-SC271	2010216-12	Sediment	06/11/20
LDW20-SC230A	2010216-14	Sediment	06/12/20
LDW20-SC222A	2010216-15	Sediment	06/12/20
LDW20-SC219A	2010216-16	Sediment	06/12/20
LDW20-SC219B	2010216-17	Sediment	06/12/20
LDW20-IT425	2010216-18	Sediment	06/17/20
LDW20-IT367	2010216-19	Sediment	06/17/20
LDW20-IT382	2010216-20	Sediment	06/17/20
LDW20-IT382MS	2010216-20MS	Sediment	06/17/20
LDW20-IT382SMD	2010216-20MSD	Sediment	06/17/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Lower Duwamish Waterway Quality Assurance Project Plan for Remedial Design of Upper Reach: Pre-Design Investigation (May 2020) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polychlorinated Biphenyls (PCBs) by Environmental Protection Agency (EPA) SW 846 Method 8082A

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0% for all compounds.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all compounds.

III. Continuing Calibration

Continuing calibration was performed at required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all compounds.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Surrogates/Internal Standards

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

All internal standard percent recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

VIII. Laboratory Control Samples/Standard Reference Materials

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

Standard reference materials (SRM) were analyzed as required by the method. The results were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Compound Quantitation

The sample results for detected compounds from the two columns were within 40% relative percent difference (RPD) with the following exceptions:

Sample	Compound	RPD	Flag	A or P
LDW20-IT425	Aroclor-1254	41.3	J (all detects)	А

Raw data were not reviewed for Stage 2B validation.

XI. Target Compound Identification

Raw data were not reviewed for Stage 2B validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Due to RPD between two columns, data were qualified as estimated in one sample.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable.

Duwamish AOC4 Polychlorinated Biphenyls - Data Qualification Summary - SDG 2010216

Sample	Compound	Flag	A or P	Reason
LDW20-IT425	Aroclor-1254	J (all detects)	A	Compound quantitation (RPD between two columns)

Duwamish AOC4

Polychlorinated Biphenyls - Laboratory Blank Data Qualification Summary - SDG 2010216

No Sample Data Qualified in this SDG

Duwamish AOC4

Polychlorinated Biphenyls - Field Blank Data Qualification Summary - SDG 2010216

No Sample Data Qualified in this SDG

LDC #: 49590D3b VALIDATION COMPLETENESS WORKSHEET

SDG #: 2010216
Laboratory: Analytical Resources, Inc.

Stage 2B

METHOD: GC Polychlorinated Biphenyls (EPA SW846 Method 8082)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
1.	Sample receipt/Technical holding times	\forall	
II.	Initial calibration/ICV	AIA	
<u>III.</u>	Continuing calibration	A	RED = 20/0. 10/= 20/0
IV.	Laboratory Blanks	A	RSD < 20/0. C < 20/0 CCV < 20/0
V.	Field blanks	\mathcal{N}	/
VI.	Surrogate spikes /IS	AB	
VII.	/ Matrix spike/Matrix spike duplicates	A	
VIII.	Laboratory control samples / SRM	AA	105/0
IX.	Field duplicates	<i>N</i>	/
X.	Compound quantitation/RL/LOQ/LODs	5W	
XI.	Target compound identification	N	
XII	Overall assessment of data	A	

Note: A = Acceptable

N = Not provided/applicable SW = See worksheet ND = No compounds detected

R = Rinsate

FB = Field blank

D = Duplicate TB = Trip blank

EB = Equipment blank

SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	LDW20-IT373	2010216-01	Sediment	06/10/20
2	LDW20-SC238A	2010216-02	Sediment	06/10/20
3	LDW20-SC235A	2010216-03	Sediment	06/10/20
4	LDW20-SC250A	2010216-04	Sediment	06/10/20
5	LDW20-IT252	2010216-05	Sediment	06/11/20
6	LDW20-IT263	2010216-06	Sediment	06/11/20
7	LDW20-SC269A	2010216-07	Sediment	06/11/20
8	LDW20-SC261A	2010216-08	Sediment	06/11/20
9 6	LDW20-SC255A	2010216-09	Sediment	06/11/20
10	LDW20-SC245A	2010216-10	Sediment	06/11/20
11	LDW20-SS271	2010216-11	Sediment	06/12/20
12	LDW20-SC271	2010216-12	Sediment	06/11/20
13_	LDW20-SC230A	2010216-14	Sediment	06/12/20
145	LDW20-SC222A	2010216-15	Sediment	06/12/20
15_	LDW20-SC219A	2010216-16	Sediment	06/12/20
165	LDW20-SC219B	2010216-17	Sediment	06/12/20
177	LDW20-IT425	2010216-18	Sediment	06/17/20

SDG _abo	#: 49590D3b VALIDATION COMPLETENESS #: 2010216 Stage 2B oratory: Analytical Resources, Inc. HOD: GC Polychlorinated Biphenyls (EPA SW846 Method 8082)	S WORKSHEET		Date:///9/> Page: > of > eviewer: 4
18	LDW20-IT367	2010216-19	Sediment	06/17/20
19	LDW20-IT382	2010216-20	Sediment	06/17/20
20	LDW20-IT382MS	2010216-20MS	Sediment	06/17/20
21_	LDW20-IT382SMD	2010216-20MSD	Sediment	06/17/20
22				
23				
24_				
Votes				
	BNORZ			

VALIDATION FINDINGS WORKSHEET

METHOD: Pesticides

A. alpha-BHC	K. Endrin	U. Toxaphene	EE. 2,4'-DDT	OO. oxy-Chlordane
		o. roxupriorio	LE. 2,4-001	OC. Oxy-Chlordane
B. beta-BHC	L. Endosulfan II	V. Aroclor-1016	FF. Hexachlorobenzene	PP. cis-Nonachlor
C. delta-BHC	M. 4,4'-DDD	W. Aroclor-1221	GG. Chlordane	QQ. trans-Nonachlor
D. gamma-BHC	N. Endosulfan sulfate	X. Aroclor-1232	HH. Chlordane (Technical)	RR. cis-Chlordane
E. Heptachlor	O. 4,4'-DDT	Y. Aroclor-1242	II. p,p'-DDE	SS. trans-Chlordane
F. Aldrin	P. Methoxychlor	Z. Aroclor-1248	JJ. p,p'-DDD	TT. alpha-Endosulphan
G. Heptachlor epoxide	Q. Endrin ketone	AA. Aroclor-1254	KK. p,p'-DDT	UU. beta-Endosulphan
H. Endosulfan I	R. Endrin aldehyde	BB. Aroclor-1260	LL. o,p'-DDT	VV. Endosulphan Sulphate
I. Dieldrin	S. alpha-Chlordane	CC. 2,4'-DDD	MM. o,p'-DDE	WW. Mirex
J. 4,4'-DDE	T. gamma-Chlordane	DD. 2,4'-DDE	NN. o,p'-DDD	

	·		
Notes:	•		
. 10100	*		

LDC #: 4959003b

VALIDATION FINDINGS WORKSHEET <u>Compound Quantitation and Reported CRQLs</u>

Page:	/of_/
Reviewer:	9_

METHOD: GC HPLC

Level IV/D Only

Y N/N/A/ Were CRQLs adjusted for sample dilutions, dry weight factors, etc.?

Did the reported results for detected target compounds agree within 10.0% of the recalculated results?

Did the relative percent differences of detected compounds between two columns/detectors <40%?

If no, please see findings bellow.

	ii no, piease see iiidings	201011.	T	
#	Compound Name	Sample ID	%RPD Between Two Columns/Detectors Limit (<u><</u> 40%)	Qualifications
	AA	17	41.3	Hotel D
			I	
			<u> </u>	

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Duwamish AOC4

LDC Report Date:

November 9, 2020

Parameters:

Metals

Validation Level:

Stage 2B

Laboratory:

Analytical Resources, Inc.

Sample Delivery Group (SDG): 2010216

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
LDW20-IT373	2010216-01	Sediment	06/10/20
LDW20-IT263	2010216-06	Sediment	06/11/20
LDW20-SS271	2010216-11	Sediment	06/12/20
LDW20-SC271	2010216-12	Sediment	06/11/20
LDW20-IT382	2010216-20	Sediment	06/17/20
LDW20-IT373MS	2010216-01MS	Sediment	06/10/20
LDW20-IT373MSD	20I0216-01MSD	Sediment	06/10/20
LDW20-IT373DUP	20I0216-01DUP	Sediment	06/10/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Lower Duwamish Waterway Quality Assurance Project Plan for Remedial Design of Upper Reach: Pre-Design Investigation (May 2020) and a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:

Arsenic, Cadmium, Chromium, Copper, Lead, Silver, and Zinc by Environmental Protection Agency (EPA) SW 846 Method 6020A Mercury by EPA SW 846 Method 7471B

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met with the following exceptions:

Sample	Analyte	Total Days From Sample Collection Until Analysis	Required Holding Time (in Days) From Sample Collection Until Analysis	Flag	A or P
LDW20-IT263 LDW20-SC271	Mercury	119	28	J (all detects)	Р
LDW20-SS271	Mercury	118	28	J (all detects)	Р

II. ICPMS Tune

The mass calibration was within 0.1 AMU and the percent relative standard deviation (%RSD) was less than or equal to 5%.

III. Instrument Calibration

Initial and continuing calibrations were performed as required by the methods.

The initial calibration verification (ICV) and continuing calibration verification (CCV) standards were within QC limits.

IV. ICP Interference Check Sample Analysis

The frequency of interference check sample (ICS) analysis was met. All criteria were within QC limits.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Analyte	MS (%R) (Limits)	MSD (%R) (Limits)	Flag	A or P
LDW20-IT373MS/MSD (LDW20-IT373DUP)	Silver	74.2 (75-125)	67.5 (75-125)	J (all detects)	А

Percent recoveries (%R) were not within QC limits for silver, no data were qualified for sample LDW20-IT373 since this analyte was not reported.

Relative percent differences (RPD) were within QC limits.

VIII. Duplicate Sample Analysis

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits.

IX. Serial Dilution

Serial dilution was not performed for this SDG.

X. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the methods. Percent recoveries (%R) were within QC limits.

XI. Field Duplicates

No field duplicates were identified in this SDG.

XII. Internal Standards (ICP-MS)

Raw data were not reviewed for Stage 2B validation.

XIII. Sample Result Verification

Raw data were not reviewed for Stage 2B validation.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the methods. No results were rejected in this SDG.

Due to technical holding time and MS/MSD %R, data were qualified as estimated in four samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable.

Duwamish AOC4 Metals - Data Qualification Summary - SDG 2010216

Sample	Analyte	Flag	A or P	Reason
LDW20-IT263 LDW20-SC271 LDW20-SS271	Mercury	J (all detects)	Р	Technical holding times
LDW20-IT373DUP	Silver	J (all detects)	А	Matrix spike/Matrix spike duplicate (%R)

Duwamish AOC4

Metals - Laboratory Blank Data Qualification Summary - SDG 2010216

No Sample Data Qualified in this SDG

Duwamish AOC4

Metals - Field Blank Data Qualification Summary - SDG 2010216

No Sample Data Qualified in this SDG

LDC #: 49590D4a **VALIDATION COMPLETENESS WORKSHEET**

SDG #: 2010216

Stage 2B

Reviewer: 2nd Reviewer:

Laboratory: Analytical Resources, Inc.

METHOD: Metals (EPA SW 846 Method 6020A/7471B)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
1.	Sample receipt/Technical holding times	AIA	5W
II.	ICP/MS Tune	A	
111.	Instrument Calibration	A	
IV.	ICP Interference Check Sample (ICS) Analysis	A	
V.	Laboratory Blanks	_A_	
VI.	Field Blanks	N	
VII.	Matrix Spike/Matrix Spike Duplicates	SW	
VIII.	Duplicate sample analysis	A	
IX.	Serial Dilution	N	
Х.	Laboratory control samples	A	LS
XI.	Field Duplicates	\mathcal{N}_{\perp}	
XII.	Internal Standard (ICP-MS)	N	notreviewed
XIII.	Sample Result Verification	N	<i>'</i>
LXIV	Overall Assessment of Data	LA_	

Note:

A = Acceptable

N = Not provided/applicable SW = See worksheet

ND = No compounds detected

R = Rinsate FB = Field blank D = Duplicate

TB = Trip blank

EB = Equipment blank

SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	LDW20-IT373	2010216-01	Sediment	06/10/20
2	LDW20-IT263	2010216-06	Sediment	06/11/20
3	LDW20-SS271	2010216-11	Sediment	06/12/20
4	LDW20-SC271	2010216-12	Sediment	06/11/20
5	LDW20-IT382	2010216-20	Sediment	06/17/20
6	LDW20-IT373MS	20I0216-01MS	Sediment	06/10/20
7	LDW20-IT373MSD	20I0216-01MSD	Sediment	06/10/20
3	LDW20-IT373DUP	20I0216-01DUP	Sediment	06/10/20
9				
10				
11				
12				

	 		 	 	 	 	 		 _
Notes:									

All elements are applicable to each sample as noted below.

Sample ID		Target Analyte List
	2	As, Cd, Cr, Cu, Pb, Ag, Zn, Hg
1, 5		As
	3	As, Hg
	4	Hg
QC: 6-8		As, Cd, Cr, Cu, Pb, Ag, Zn
	······································	Analysis Method

ICP		
ICP-MS	As, Cd, Cr, Cu, Pb, Ag, Zn	
CVAA	Hg	

METHOD: Trace Metals (EPA SW 846 Methods 6010/6020/7000)

All samples were properly preserved (water samples to a pH of <2) and analyzed within the required holding time with the following exceptions.

Method:		Mercury by 7471B, HT = 28 days								
Sample ID	Sampling Date	Analysis Date	Total Time from Collection to	Qualifier	Det/ND					
2, 4	6/11/2020	10/8/2020	119	J/R/P	Det					
	3 6/12/2020	10/8/2020	118	J/R/P	Det					
				<u></u>						
				1 11 11 11 11 11 11 11 11 11 11 11 11 1						

METHOD: Trace Metals (EPA SW 846 Methods 6010/6020/7000)

MS/MSD analysis was performed by the laboratory. All MS/MSD percent recoveries (%R) and relative percent differences (RPDs) were within the acceptable limits with the following exceptions:

MS/MSD										
D	Matrix	Analyte	MS %R	MSD %R	%R Limit	RPD	RPD Limit	Associated Samples	Qualification	Det/ND
									No qual, Ag not	
5, 7	s	Ag	74.2	67.5	75-125		_	1	reported	
								8	J/UJ/A	Det
_										
_										
<u></u>										
										<u></u>
_	1									

Comments:

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Duwamish AOC4

LDC Report Date: November 9, 2020

Parameters: Wet Chemistry

Validation Level: Stage 2B

Laboratory: Analytical Resources, Inc.

Sample Delivery Group (SDG): 2010216

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
LDW20-IT373	2010216-01	Sediment	06/10/20
LDW20-SC238A	2010216-02	Sediment	06/10/20
LDW20-SC235A	2010216-03	Sediment	06/10/20
LDW20-SC250A	2010216-04	Sediment	06/10/20
LDW20-IT252	2010216-05	Sediment	06/11/20
LDW20-IT263	2010216-06	Sediment	06/11/20
LDW20-SC269A	2010216-07	Sediment	06/11/20
LDW20-SC261A	2010216-08	Sediment	06/11/20
LDW20-SC255A	2010216-09	Sediment	06/11/20
LDW20-SC245A	2010216-10	Sediment	06/11/20
LDW20-SS271	2010216-11	Sediment	06/12/20
LDW20-SC271	2010216-12	Sediment	06/11/20
LDW20-SC230A	2010216-14	Sediment	06/12/20
LDW20-SC222A	2010216-15	Sediment	06/12/20
LDW20-SC219A	2010216-16	Sediment	06/12/20
LDW20-SC219B	2010216-17	Sediment	06/12/20
LDW20-IT425	2010216-18	Sediment	06/17/20
LDW20-IT367	2010216-19	Sediment	06/17/20
LDW20-IT382	2010216-20	Sediment	06/17/20
LDW20-IT373DUP1	20I0216-01DUP1	Sediment	06/10/20
LDW20-IT373DUP2	2010216-01DUP2	Sediment	06/10/20
LDW20-IT263MS	2010216-06MS	Sediment	06/11/20
LDW20-IT263MSD	2010216-06MSD	Sediment	06/11/20
LDW20-IT263DUP1	2010216-06DUP1	Sediment	06/11/20
LDW20-IT263DUP1	20I0216-06DUP2	Sediment	06/11/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Lower Duwamish Waterway Quality Assurance Project Plan for Remedial Design of Upper Reach: Pre-Design Investigation (May 2020) and a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:

Total Organic Carbon by Environmental Protection Agency (EPA) SW 846 Method 9060A

Total Solids by Standard Method 2540G

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. Initial Calibration

All criteria for the initial calibration of each method were met.

III. Continuing Calibration

Continuing calibration frequency and analysis criteria were met for each method when applicable.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks with the following exceptions:

Blank ID	Analyte	Maximum Concentration	Associated Samples
ICB/CCB	Total organic carbon	0.02%	All samples in SDG 20l0216

Data qualification by the laboratory blanks was based on the maximum contaminant concentration in the laboratory blanks in the analysis of each analyte. The sample concentrations were either not detected or were significantly greater than the concentrations found in the associated laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

VII. Duplicate Sample Analysis

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits.

VIII. Laboratory Control Samples/Standard Reference Materials

Laboratory control samples (LCS) were analyzed as required by the methods. Percent recoveries (%R) were within QC limits.

Standard reference materials (SRM) were analyzed as required by the methods. The results were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Sample Result Verification

Raw data were not reviewed for Stage 2B validation.

XI. Overall Assessment of Data

The analysis was conducted within all specifications of the methods. No results were rejected in this SDG.

The quality control criteria reviewed were met and are considered acceptable.

Duwamish AOC4
Wet Chemistry - Data Qualification Summary - SDG 2010216

No Sample Data Qualified in this SDG

Duwamish AOC4
Wet Chemistry - Laboratory Blank Data Qualification Summary - SDG 2010216

No Sample Data Qualified in this SDG

Duwamish AOC4
Wet Chemistry - Field Blank Data Qualification Summary - SDG 2010216

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET LDC #: 49590D6

Stage 2B

SDG #: 2010216 Laboratory: Analytical Resources, Inc. 2nd Reviewer

METHOD: (Analyte) TOC (EPA SW846 9060A), Total Solids (SM 2540G)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
1.	Sample receipt/Technical holding times	A A	
- 11	Initial calibration	A	
111.	Calibration verification	A	
IV	Laboratory Blanks	SW	
V	Field blanks	N	
VI.	Matrix Spike/Matrix Spike Duplicates	A	
VII.	Duplicate sample analysis	A	
VIII.	Laboratory control samples	A	LCS SRM
IX.	Field duplicates	\mathcal{N}	, -
Х.	Sample result verification	N	
Lxı	Overall assessment of data	A	

Note:

A = Acceptable

N = Not provided/applicable SW = See worksheet

ND = No compounds detected

R = Rinsate FB = Field blank D = Duplicate TB = Trip blank

EB = Equipment blank

SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	LDW20-IT373	2010216-01	Sediment	06/10/20
2	LDW20-SC238A	2010216-02	Sediment	06/10/20
3	LDW20-SC235A	2010216-03	Sediment	06/10/20
4	LDW20-SC250A	2010216-04	Sediment	06/10/20
5	LDW20-IT252	2010216-05	Sediment	06/11/20
6	LDW20-IT263	2010216-06	Sediment	06/11/20
7	LDW20-SC269A	2010216-07	Sediment	06/11/20
8	LDW20-SC261A	2010216-08	Sediment	06/11/20
9	LDW20-SC255A	2010216-09	Sediment	06/11/20
10	LDW20-SC245A	2010216-10	Sediment	06/11/20
11	LDW20-SS271	2010216-11	Sediment	06/12/20
12	LDW20-SC271	20 0216-12	Sediment	06/11/20
13	LDW20-SC230A	2010216-14	Sediment	06/12/20
14	LDW20-SC222A	2010216-15	Sediment	06/12/20
15	LDW20-SC219A	2010216-16	Sediment	06/12/20
16	LDW20-SC219B	2010216-17	Sediment	06/12/20
17	LDW20-IT425	2010216-18	Sediment	06/17/20

LDC	#:	49590D6	

VALIDATION COMPLETENESS WORKSHEET

Stage 2B

SDG #: 2010216
Laboratory: Analytical Resources, Inc.

Date: 1157
Page: 7 of 7
Reviewer: 2nd Reviewer:

METHOD: (Analyte) TOC (EPA SW846 9060A), Total Solids (SM 2540G)

18	LDW20-IT367	2010216-19	Sediment	06/17/20
19_	LDW20-IT382	2010216-20	Sediment	06/17/20
20_	LDW20-IT373DUP 1	2010216-01DUP _1	Sediment	06/10/20
21_	LDW20-IT373TRP	2010216-01 TRP	Sediment	06/10/20
22_	LDW20-IT263MS	2010216-06MS	Sediment	06/11/20
23_	LDW20-IT263MSD	20I0216-06MSD	Sediment	06/11/20
24	LDW20-IT263DUP 1	2010216-06DUP 1	Sediment	06/11/20
25_	LDW20-IT263TRP0~2	2010216-06 TRP	Sediment	06/11/20
26				
27_				
28				

Notes:	 	 	

VALIDATION FINDINGS WORKSHEET Sample Specific Element Reference

All elements are applicable to each sample as noted below.

Sample ID		Target Analyte List	
1 to 19		Total solids, TOC	
QC:			
	20	Total solids	
	21	Total solids	
22, 23		TOC	
	24	тос	
	25	тос	
			\Box

LDC#: 49590D6

VALIDATION FINDINGS WORKSHEET <u>Laboratory Blank Contamination (PB/ICB/CCB)</u>

Page 1 of 1 Reviewer:CR

METHOD: Inorganics

Soil preparation factor applied (if applicable):

Sample Concentration, unless otherwise noted: %

Associated Samples: All

				Sample Identification							
Analyte	PB (units)	Maximum ICB/CCB (%)	Action Level	No qual							
тос		0.02	0.02								

Comments: The listed analyte concentration is the highest ICB or CCB detected in the analysis. The action level, when applicable, is establised

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Duwamish AOC4

LDC Report Date: November 16, 2020

Parameters: Semivolatiles

Validation Level: Stage 2B

Laboratory: Analytical Resources, Inc.

Sample Delivery Group (SDG): 2010226

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
LDW20-IT200	2010226-01	Sediment	06/04/20
LDW20-IT236	2010226-02	Sediment	06/04/20
LDW20-IT232	2010226-03	Sediment	06/04/20
LDW20-IT215	2010226-05	Sediment	06/05/20
LDW20-IT240	2010226-06	Sediment	06/05/20
LDW20-IT247	2010226-07	Sediment	06/05/20
LDW20-IT310	2010226-08	Sediment	06/05/20
LDW20-IT356	2010226-14	Sediment	06/09/20
LDW20-IT369	2010226-15	Sediment	06/09/20
LDW20-IT372	2010226-16	Sediment	06/09/20
LDW20-IT377	2010226-17	Sediment	06/09/20
LDW20-IT364	2010226-18	Sediment	06/10/20
LDW20-IT228	2010226-19	Sediment	06/10/20
LDW20-IT268	2010226-20	Sediment	06/11/20
LDW20-IT200MS	2010226-01MS	Sediment	06/04/20
LDW20-IT200MSD	2010226-01MSD	Sediment	06/04/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Lower Duwamish Waterway Quality Assurance Project Plan for Remedial Design of Upper Reach: Pre-Design Investigation (May 2020) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Semivolatile Organic Compounds (SVOCs) by Environmental Protection Agency (EPA) SW 846 Method 8270E in Selected Ion Monitoring (SIM) mode

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

A decafluorotriphenylphosphine (DFTPP) tune was performed at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

For compounds where average relative response factors (RRFs) were utilized, percent relative standard deviations (%RSD) were less than or equal to 20.0%.

In the case where the laboratory used a calibration curve to evaluate the compounds, all coefficients of determination (r^2) were greater than or equal to 0.990.

Average relative response factors (RRF) for all compounds were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 30.0% for all compounds.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all compounds with the following exceptions:

Date	Compound	%D	Associated Samples	Flag	A or P
10/09/20	Indeno(1,2,3-cd)pyrene Dibenzo(a,h)anthracene	26.4 24.0	LDW20-IT200 LDW20-IT236 LDW20-IT232 LDW20-IT240 LDW20-IT247 LDW20-IT310 LDW20-IT356 LDW20-IT369 LDW20-IT372 LDW20-IT377 LDW20-IT377 LDW20-IT374 LDW20-IT374	J (all detects) J (all detects)	A

Date	Compound	%D	Associated Samples	Flag	A or P
10/12/20	Indeno(1,2,3-cd)pyrene Dibenzo(a,h)anthracene	25.6 21.6	LDW20-IT215 LDW20-IT268	J (all detects) J (all detects)	А

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks with the following exceptions:

Blank ID	Extraction Date	Compound	Concentration	Associated Samples
BII0692-BLK	09/25/20	Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenzo(a,h)anthracene	2.11 ug/Kg 2.28 ug/Kg 3.76 ug/Kg 3.15 ug/Kg 4.00 ug/Kg 8.48 ug/Kg 8.12 ug/Kg	All samples in SDG 2010226

Sample concentrations were compared to concentrations detected in the laboratory blanks. The sample concentrations were either not detected or were significantly greater than the concentrations found in the associated laboratory blanks with the following exceptions:

Sample	Compound	Reported Concentration	Modified Final Concentration
LDW20-IT200	Indeno(1,2,3-cd)pyrene	38.3 ug/Kg	38.3U ug/Kg
	Dibenzo(a,h)anthracene	17.0 ug/Kg	17.0U ug/Kg
LDW20-IT236 Indeno(1,2,3-cd)pyrene Dibenzo(a,h)anthracene		29.9 ug/Kg 9.76 ug/Kg	29.9U ug/Kg 9.76U ug/Kg
LDW20-IT232	Dibenzo(a,h)anthracene	22.7 ug/Kg	22.7U ug/Kg
LDW20-IT215	Indeno(1,2,3-cd)pyrene	21.8 ug/Kg	21.8U ug/Kg
	Dibenzo(a,h)anthracene	8.04 ug/Kg	8.04U ug/Kg
LDW20-IT240	Indeno(1,2,3-cd)pyrene	32.2 ug/Kg	32.2U ug/Kg
	Dibenzo(a,h)anthracene	5.81 ug/Kg	5.81U ug/Kg
LDW20-IT247	Indeno(1,2,3-cd)pyrene	34.1 ug/Kg	34.1U ug/Kg
	Dibenzo(a,h)anthracene	7.42 ug/Kg	7.42U ug/Kg
LDW20-IT310	Dibenzo(a,h)anthracene	37.7 ug/Kg	37.7U ug/Kg

Sample	Compound	Reported Concentration	Modified Final Concentration
LDW20-IT356	Indeno(1,2,3-cd)pyrene Dibenzo(a,h)anthracene	41.6 ug/Kg 14.6 ug/Kg	41.6U ug/Kg 14.6U ug/Kg
LDW20-IT369	Dibenzo(a,h)anthracene	21.6 ug/Kg	21.6U ug/Kg
LDW20-IT372	Dibenzo(a,h)anthracene	14.4 ug/Kg	14.4U ug/Kg
LDW20-IT377	Dibenzo(a,h)anthracene	23.9 ug/Kg	23.9U ug/Kg
LDW20-IT228	Dibenzo(a,h)anthracene	21.0 ug/Kg	21.0U ug/Kg
LDW20-IT268	Indeno(1,2,3-cd)pyrene Dibenzo(a,h)anthracene	23.4 ug/Kg 5.85 ug/Kg	23.4U ug/Kg 5.85U ug/Kg

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Laboratory Control Samples/Standard Reference Materials

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

Standard reference materials (SRM) were analyzed as required by the method. The results were within QC limits.

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Compound Quantitation

All compound quantitations met validation criteria with the following exceptions:

Sample	Compound	Finding	Criteria	Flag	A or P
LDW20-IT364	Chrysene Benzo(b)fluoranthene	Sample result exceeded calibration range.	Reported result should be within calibration range.	J (all detects) J (all detects)	Р

Raw data were not reviewed for Stage 2B validation.

XIII. Target Compound Identifications

Raw data were not reviewed for Stage 2B validation.

XIV. System Performance

Raw data were not reviewed for Stage 2B validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Due to continuing calibration %D and results exceeding calibration range, data were qualified as estimated in fourteen samples.

Due to laboratory blank contamination, data were qualified as not detected in thirteen samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable.

Duwamish AOC4 Semivolatiles – Data Qualification Summary - SDG 2010226

Sample	Compound	Flag	A or P	Reason
LDW20-IT200 LDW20-IT236 LDW20-IT232 LDW20-IT240 LDW20-IT347 LDW20-IT356 LDW20-IT369 LDW20-IT372 LDW20-IT377 LDW20-IT364 LDW20-IT288 LDW20-IT288 LDW20-IT288	Indeno(1,2,3-cd)pyrene Dibenzo(a,h)anthracene	J (all detects) J (all detects)	А	Continuing calibration (%D)
LDW20-IT364	Chrysene Benzo(b)fluoranthene	J (all detects) J (all detects)	Р	Compound quantitation (exceeded range)

Duwamish AOC4 Semivolatiles - Laboratory Blank Data Qualification Summary - SDG 2010226

Sample	Compound	Modified Final Concentration	A or P
LDW20-IT200	Indeno(1,2,3-cd)pyrene Dibenzo(a,h)anthracene	38.3U ug/Kg 17.0U ug/Kg	Α
LDW20-IT236	Indeno(1,2,3-cd)pyrene Dibenzo(a,h)anthracene	29.9U ug/Kg 9.76U ug/Kg	А
LDW20-IT232	Dibenzo(a,h)anthracene	22.7U ug/Kg	Α
LDW20-IT215	Indeno(1,2,3-cd)pyrene Dibenzo(a,h)anthracene	21.8U ug/Kg 8.04U ug/Kg	Α
LDW20-IT240	Indeno(1,2,3-cd)pyrene Dibenzo(a,h)anthracene	32.2U ug/Kg 5.81U ug/Kg	А
LDW20-IT247	Indeno(1,2,3-cd)pyrene Dibenzo(a,h)anthracene	34.1U ug/Kg 7.42U ug/Kg	А
LDW20-IT310	Dibenzo(a,h)anthracene	37.7U ug/Kg	А
LDW20-IT356	Indeno(1,2,3-cd)pyrene Dibenzo(a,h)anthracene	41.6U ug/Kg 14.6U ug/Kg	A
LDW20-IT369	Dibenzo(a,h)anthracene	21.6U ug/Kg	А

Sample	Compound	Modified Final Concentration	A or P
LDW20-IT372	Dibenzo(a,h)anthracene	14.4U ug/Kg	Α
LDW20-IT377	Dibenzo(a,h)anthracene	23.9U ug/Kg	А
LDW20-IT228	Dibenzo(a,h)anthracene	21.0U ug/Kg	А
LDW20-IT268	Indeno(1,2,3-cd)pyrene Dibenzo(a,h)anthracene	23.4U ug/Kg 5.85U ug/Kg	А

Duwamish AOC4 Semivolatiles - Field Blank Data Qualification Summary - SDG 2010226

No Sample Data Qualified in this SDG

LI	D	С	#:	49590E2	b

VALIDATION COMPLETENESS WORKSHEET

Stage 2B

SDG #: 2010226 Laboratory: Analytical Resources, Inc.

Reviewer: 2nd Reviewer:

METHOD: GC/MS Polynuclear Aromatic Hydrocarbons (EPA SW 846 Method 8270E-SIM)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
1.	Sample receipt/Technical holding times	A	
11.	GC/MS Instrument performance check	A	
111.	Initial calibration/ICV	AIA	RSD < 20% Y 10/49070
IV.	Continuing calibration	M	RSD < 20/0 Y = 10/490/0
V.	Laboratory Blanks	M	
VI.	Field blanks	\mathcal{N}	
VII.	Surrogate spikes	A	
VIII.	Matrix spike/Matrix spike duplicates	A	
IX.	Laboratory control samples / SRM	AA	109
X.	Field duplicates	\ \ \	
XI.	Internal standards	A	
XII.	Compound quantitation RL/LOQ/LODs	ŹN	
XIII.	Target compound identification	N	
XIV.	System performance	N	
XV.	Overall assessment of data	\forall	

Note:

A = Acceptable

N = Not provided/applicable

SW = See worksheet

ND = No compounds detected

R = Rinsate

FB = Field blank

D = Duplicate

TB = Trip blank

EB = Equipment blank

SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	LDW20-IT200	2010226-01	Sediment	06/04/20
2	LDW20-IT236	2010226-02	Sediment	06/04/20
3	LDW20-IT232	2010226-03	Sediment	06/04/20
4	LDW20-IT215	2010226-05	Sediment	06/05/20
5	LDW20-IT240	2010226-06	Sediment	06/05/20
6	LDW20-IT247	2010226-07	Sediment	06/05/20
7	LDW20-IT310	2010226-08	Sediment	06/05/20
8	LDW20-IT356	2010226-14	Sediment	06/09/20
9	LDW20-IT369	2010226-15	Sediment	06/09/20
10	LDW20-IT372	2010226-16	Sediment	06/09/20
11	LDW20-IT377	2010226-17	Sediment	06/09/20
12	LDW20-IT364	2010226-18	Sediment	06/10/20
13	LDW20-IT228	2010226-19	Sediment	06/10/20
14_	LDW20-IT268	2010226-20	Sediment	06/11/20

SDG _abo	#: 49590E2b #: 2010226 pratory: Analytical Resou	F	Date:////// Page:_2-of2- iewer: iewer:		
15	LDW20-IT200MS		2010226-01MS	Sediment	06/04/20
16	LDW20-IT200MSD		2010226-01MSD	Sediment	06/04/20
17					
18		4.00			
19					
Votes					

VALIDATION FINDINGS WORKSHEET

METHOD: GC/MS SVOA

A. Phenol	AA. 2-Chloronaphthalene	AAA. Butylbenzylphthalate	AAAA. Dibenzothiophene	A1.Dibenz(a,h)+(a,c)anthracene
B. Bis (2-chloroethyl) ether	BB. 2-Nitroaniline	BBB. 3,3'-Dichlorobenzidine	BBBB. Benzo(a)fluoranthene	B1.Benzo(j)fluoranthene
C. 2-Chlorophenol	CC. Dimethylphthalate	CCC. Benzo(a)anthracene	CCCC. Benzo(b)fluorene	C1.Benzo(b)naphtho(2,1-d)thiophene
D. 1,3-Dichlorobenzene	DD. Acenaphthylene	DDD. Chrysene	DDDD. cis/trans-Decalin	D1.
E. 1,4-Dichlorobenzene	EE. 2,6-Dinitrotoluene	EEE. Bis(2-ethylhexyl)phthalate	EEEE. Biphenyl	E1.
F. 1,2-Dichlorobenzene	FF. 3-Nitroaniline	FFF. Di-n-octylphthalate	FFFF. Retene	F1.
G. 2-Methylphenol	GG. Acenaphthene	GGG. Benzo(b)fluoranthene	GGGG. C30-Hopane	G1.
H. 2,2'-Oxybis(1-chloropropane)	HH. 2,4-Dinitrophenol	HHH. Benzo(k)fluoranthene	HHHH. 1-Methylphenanthrene	H1.
I. 4-Methylphenol	II. 4-Nitrophenol	III. Benzo(a)pyrene	IIII. 1,4-Dioxane	11.
J. N-Nitroso-di-n-propylamine	JJ. Dibenzofuran	JJJ. Indeno(1,2,3-cd)pyrene	JJJJ. Acetophenone	J1.
K. Hexachloroethane	KK. 2,4-Dinitrotoluene	KKK. Dibenz(a,h)anthracene	KKKK. Atrazine	K1.
L. Nitrobenzene	LL. Diethylphthalate	LLL. Benzo(g,h,i)perylene	LLLL. Benzaldehyde	L1.
M. Isophorone	MM. 4-Chlorophenyl-phenyl ether	MMM. Bis(2-Chloroisopropyl)ether	MMMM. Caprolactam	M1.
N. 2-Nitrophenol	NN. Fluorene	NNN. Aniline	NNNN. 2,6-Dichlorophenol	N1.
O. 2,4-Dimethylphenol	OO. 4-Nitroaniline	OOO. N-Nitrosodimethylamine	OOOO. 1,2-Diphenylhydrazine	01.
P. Bis(2-chloroethoxy)methane	PP. 4,6-Dinitro-2-methylphenol	PPP. Benzoic Acid	PPPP. 3-Methylphenol	P1.
Q. 2,4-Dichlorophenol	QQ. N-Nitrosodiphenylamine	QQQ. Benzyl alcohol	QQQQ. 3&4-Methylphenol	Q1.
R. 1,2,4-Trichlorobenzene	RR. 4-Bromophenyl-phenylether	RRR. Pyridine	RRRR. 4-Dimethyldibenzothiophene (4MDT)	R1.
S. Naphthalene	SS. Hexachlorobenzene	SSS. Benzidine	SSSS. 2/3-Dimethyldibenzothiophene (4MDT)	S1.
T. 4-Chloroaniline	TT. Pentachlorophenol	TTT. 1-Methylnaphthalene	TTTT. 1-Methyldibenzothiophene (1MDT)	T1.
U. Hexachlorobutadiene	UU. Phenanthrene	UUU.Benzo(b)thiophene	UUUU. 2,3,4,6-Tetrachlorophenoi	U1.
V. 4-Chloro-3-methylphenol	VV. Anthracene	VVV.Benzonaphthothiophene	VVVV. 1,2,4,5-Tetrachlorobenzene	V1.
W. 2-Methylnaphthalene	WW. Carbazole	WWW.Benzo(e)pyrene	WWWW. Chrysene/Triphenylene	W1.
X. Hexachlorocyclopentadiene	XX. Di-n-butylphthalate	XXX. 2,6-Dimethylnaphthalene	XXXX.Benzo(j)+(k)fluoranthene	X1.
Y. 2,4,6-Trichlorophenol	YY. Fluoranthene	YYY. 2,3,5-Trimethylnaphthalene	YYYY. Naphthobenzophiophene	Y1.
Z. 2,4,5-Trichlorophenol	ZZ. Pyrene	ZZZ. Perylene	ZZZZ.Benzofluoranthenes, Total	Z1.

LDC#:49590Z2

VALIDATION FINDINGS WORKSHEET Continuing Calibration

Page: / of / Reviewer: _ _ _

METHOD: GC/MS BNA (EPA SW 846 Method 8270D)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?

Y N N/A

Were percent differences (%D) <20 % and relative response factors (RRF) within the method criteria?

	Were percent differences (%D) ≤20 % and relative response factors (RRF) within the method criteria?								
#	Date	Standard ID	Compound	Finding %D (Limit: <u><</u> 20.0%)	Finding RRF (Limit)	Associated Samples	Qualifications		
	10/9/20	NT820100921	W	26.4		1-3.5-13.15-16	V/W/A		
	' / /		HK	24.0		MB (dets)			
-									
-	10/12/20	NT82010/202	111	25.6		\$ 14.4 (dets)	1/14/4		
	'/ /		KKK	2/.6		/ //			
 									
						-			
<u> </u>									
-									

LDC #: 49590E2b

VALIDATION FINDINGS WORKSHEET Blanks

Page:_	1	_of_	
Reviewer:		PG	

METHOD: GC/MS BNA (EPA SW 846 Method 8270E-SIM)

Blank extraction date: 9/25/20 Blank analysis date: 10/9/20

Conc. units: ug/kg Associated Samples: 4/

Compound	Sample Identification									
	BII0692-BLK1	/	2	_3	4	5	6	7	8	9
ccc	2.11							′		,
DDD	2.28									
GGG	3.76									
ннн	3.15									
III	4.00									
JJJ >R4	8.48	38. 3 /4	29.9/U		21.8/4	32,2/4	34.1/U		41.6/4	
KKK L	8.12	17.0/11	9.76/11	227/4	804/11	5.81/4	7.47/1	37.7/U	14.6/11	26/4
		/ /	. / . /		/				/ /	

LDC #: 49590E2b

VALIDATION FINDINGS WORKSHEET Blanks

Page:_	1	_of_1	
Reviewer:		PG	

METHOD: GC/MS BNA (EPA SW 846 Method 8270E-SIM)

Blank extraction date: 9/25/20 Blank analysis date: 10/9/20

Conc. units: ug/kg Associated Samples:

Compound	Blank ID		Sample Identification							
	BII0692-BLK1	10	//	13	14					
ccc	2.11									
DDD	2.28								,	
GGG	3.76									
ННН	3.15									
III	4.00									
JJJ > K _	8.48				23.4/4					
ккк 🖊	8.12	14.4/11	23.9/11	21.0/11	5.85/4					
				/ /						

VALIDATION FINDINGS WORKSHEET Compound Quantitation and Reported RLs

Page: _	/of/_
Reviewer:	4
2nd Reviewer:	

METHOD: GC/MS BNA (EPA SW 846 Method 8270D)

Please see qualifications below for a	I questions answered "N".	Not applicable questions	are identified as "N/A".

Y N N/A
Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?
Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?

					T
#	Date	Compound	Finding	Associated Samples	Qualifications
		/2	ptop, 444 > calib u	ang e	Idet A
			,		
	·				

Comments:	See sample calculation verification worksheet for recalculations	
·		

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Duwamish AOC4

LDC Report Date:

November 16, 2020

Parameters:

Polychlorinated Biphenyls

Validation Level:

Stage 2B

Laboratory:

Analytical Resources, Inc.

Sample Delivery Group (SDG): 2010226

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
LDW20-IT200	2010226-01	Sediment	06/04/20
LDW20-SC155A	2010226-10	Sediment	06/08/20
LDW20-SC166A	2010226-11	Sediment	06/08/20
LDW20-SC166B	2010226-12	Sediment	06/08/20
LDW20-SC208A	2010226-13	Sediment	06/08/20
LDW20-SC208ADL	20I0226-13DL	Sediment	06/08/20
LDW20-SC155AMS	2010226-10MS	Sediment	06/08/20
LDW20-SC155AMSD	20I0226-10MSD	Sediment	06/08/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Lower Duwamish Waterway Quality Assurance Project Plan for Remedial Design of Upper Reach: Pre-Design Investigation (May 2020) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polychlorinated Biphenyls (PCBs) by Environmental Protection Agency (EPA) SW 846 Method 8082

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0% for all compounds.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all compounds.

III. Continuing Calibration

Continuing calibration was performed at required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all compounds.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Surrogates/Internal Standards

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

All internal standard percent recoveries (%R) were within QC limits with the following exceptions:

Sample	Internal Standards	%R (Limits)	Affected Compound	Flag	A or P
LDW20-SC208A	Hexabromobiphenyl	46 (50-200)	Aroclor-1260	J (all detects)	Α

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

VIII. Laboratory Control Samples/Standard Reference Materials

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

Standard reference materials (SRM) were analyzed as required by the method. The results were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Compound Quantitation

Raw data were not reviewed for Stage 2B validation.

XI. Target Compound Identification

Raw data were not reviewed for Stage 2B validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

In the case where more than one result was reported for an individual sample, the least technically acceptable results were deemed not reportable as follows:

Sample	Compound	Reason	Flag	A or P
LDW20-SC208A	Aroclor-1248 Aroclor-1254 Aroclor-1260	Matrix interference.	Not reportable	-
LDW20-SC208ADL	All compounds except Aroclor-1248 Aroclor-1254 Aroclor-1260	Results from undiluted analyses were more usable.	Not reportable	-

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable.

Duwamish AOC4 Polychlorinated Biphenyls - Data Qualification Summary - SDG 2010226

Sample	Sample Compound		A or P	Reason
LDW20-SC208A	Aroclor-1248 Aroclor-1254 Aroclor-1260	Not reportable	-	Overall assessment of data
LDW20-SC208ADL	All compounds except Aroclor-1248 Aroclor-1254 Aroclor-1260	Not reportable	-	Overall assessment of data

Duwamish AOC4

Polychlorinated Biphenyls - Laboratory Blank Data Qualification Summary - SDG 2010226

No Sample Data Qualified in this SDG

Duwamish AOC4

Polychlorinated Biphenyls - Field Blank Data Qualification Summary - SDG 2010226

No Sample Data Qualified in this SDG

_DC	#: <u>49590E3b</u> VALIDAT	ION COMP	LETENESS	WORKSHEE	ΕT	Date:///9/
	#:2010226	S	tage 2B		Б	Page:_/_of
.abo	ratory: Analytical Resources, Inc.					eviewer:
MET	HOD: GC Polychlorinated Biphenyls (E	PA SW846 M	ethod 8082)			
The s	samples listed below were reviewed for	each of the fo	ollowing valida	tion areas. Valida	ation findings are r	noted in attach
	ation findings worksheets.	caon or the re	moving valida	non areas. Vana		oted in attach
	Validation Area			Con	nments	
l.	Sample receipt/Technical holding times	A				
II.	Initial calibration/ICV	AA	₹5% ≤	2070.	101 < 20)	3
111.	Continuing calibration	A	COVE	20%		
IV.	Laboratory Blanks	A		1		
V.	Field blanks	N				
VI.	Surrogate spikes / 15	A/W/				
VII.		A				
VIII	Laboratory control samples /SRM	AA	Les/	グ		
IX.	Field duplicates	/N	/			
Χ.	Compound quantitation/RL/LOQ/LODs	N				
XI.	Target compound identification	N				
XII	Overall assessment of data	M				
ote:	N = Not provided/applicable R =	= No compounds Rinsate = Field blank	detected	D = Duplicate TB = Trip blank EB = Equipment t	SB=Sourc OTHER: olank	ce blank
	Client ID			Lab ID	Matrix	Date
	LDW20-IT200			2010226-01	Sediment	06/04/20
2	LDW20-SC155A			2010226-10	Sediment	06/08/20
3	LDW20-SC166A			2010226-11	Sediment	06/08/20
1	LDW20-SC166B			2010226-12	Sediment	06/08/20
ร์งน	LDW20-SC208A			2010226-13	Sediment	06/08/20
3	LDW20-SC208ADL			2010226-13DL	Sediment	06/08/20
7	LDW20-SC155AMS			2010226-10MS	Sediment	06/08/20
3	LDW20-SC155AMSD			2010226-10MSD	Sediment	06/08/20
)						
10						
11						
				1	ı	

VALIDATION FINDINGS WORKSHEET

METHOD: Pesticides

A. alpha-BHC	K. Endrin	U. Toxaphene	EE. 2,4'-DDT	OO. oxy-Chlordane
B. beta-BHC	L. Endosulfan II	V. Aroclor-1016	FF. Hexachlorobenzene	PP. cis-Nonachlor
C. delta-BHC	M. 4,4'-DDD	W. Aroclor-1221	GG. Chlordane	QQ. trans-Nonachlor
D. gamma-BHC	N. Endosulfan sulfate	X. Aroclor-1232	HH. Chlordane (Technical)	RR. cis-Chlordane
E. Heptachlor	O. 4,4'-DDT	Y. Aroclor-1242	II. p,p'-DDE	SS. trans-Chlordane
F. Aldrin	P. Methoxychlor	Z. Aroclor-1248	JJ. p,p'-DDD	TT. alpha-Endosulphan
G. Heptachlor epoxide	Q. Endrin ketone	AA. Aroclor-1254	KK. p,p'-DDT	UU. beta-Endosulphan
H. Endosulfan I	R. Endrin aldehyde	BB. Aroclor-1260	LL. o,p'-DDT	VV. Endosulphan Sulphate
I. Dieldrin	S. alpha-Chlordane	CC. 2,4'-DDD	MM. o,p'-DDE	WW. Mirex
J. 4,4'-DDE	T. gamma-Chlordane	DD. 2,4'-DDE	NN. o,p'-DDD	

LDC#: 49590 236

VALIDATION FINDINGS WORKSHEET Internal Standards

Page:_	/of_ <i>/</i>
Reviewer:	9
2nd Reviewer:	

METHOD: LC/MS Perchlorate

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Y N/A Were all internal standard area counts within -50 to +100 of the associated calibration standard?

Were the retention times of the internal standards within +/- 30 seconds of the retention times of the associated calibration standard?

#	Date			76 R Area (Limits) 140979(46 (50-200)		
		Sample ID 5 (left)	HBP	1409791 46 (50-200)		Qualifications VM A (FE)
		(, , ,	/			1/1/2/11/
					<u> </u>	

HBJ = Hexabromobipheny/

LDC #:49490236

VALIDATION FINDINGS WORKSHEET Overall Assessment of Data

Page: _	<u></u>
Reviewer	2

METHOD:	_√GC	HPLC

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

All available information pertaining to the data were reviewed using professional judgement to compliment the determination of the overall quality of the data.

Y N N/A

Was the overall quality and usability of the data acceptable?

#	Compound Name	Finding	Associated Samples	Qualifications
<u> </u>	5	Z, AA, BB (matrix interfore	ece)	NR/A
		/		1
	6	Finding Z, AA, BB (matrix interfere) AI/ except Z. AA, BB		d
		/		

Comments:		 	 		

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Duwamish AOC4

LDC Report Date: November 9, 2020

Parameters: Arsenic

Validation Level: Stage 2B

Laboratory: Analytical Resources, Inc.

Sample Delivery Group (SDG): 2010226

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
LDW20-IT200	2010226-01	Sediment	06/04/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Lower Duwamish Waterway Quality Assurance Project Plan for Remedial Design of Upper Reach: Pre-Design Investigation (May 2020) and a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Arsenic by Environmental Protection Agency (EPA) SW 846 Method 6020A

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. ICPMS Tune

The mass calibration was within 0.1 AMU and the percent relative standard deviation (%RSD) was less than or equal to 5%.

III. Instrument Calibration

Initial and continuing calibrations were performed as required by the method.

The initial calibration verification (ICV) and continuing calibration verification (CCV) standards were within QC limits.

IV. ICP Interference Check Sample Analysis

The frequency of interference check sample (ICS) analysis was met. All criteria were within QC limits.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Duplicate Sample Analysis

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

IX. Serial Dilution

Serial dilution was not performed for this SDG.

X. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

XI. Field Duplicates

No field duplicates were identified in this SDG.

XII. Internal Standards (ICP-MS)

Raw data were not reviewed for Stage 2B validation.

XIII. Sample Result Verification

Raw data were not reviewed for Stage 2B validation.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

The quality control criteria reviewed were met and are considered acceptable.

Duwamish AOC4 Arsenic - Data Qualification Summary - SDG 2010226

No Sample Data Qualified in this SDG

Duwamish AOC4 Arsenic - Laboratory Blank Data Qualification Summary - SDG 2010226

No Sample Data Qualified in this SDG

Duwamish AOC4
Arsenic - Field Blank Data Qualification Summary - SDG 2010226

No Sample Data Qualified in this SDG

			PLETENES: Stage 2B	S WORKSHEE	Т	Date: <u>[[[</u> S
	:20I0226 tory: Analytical Resources, Inc.		stage Zb		F	_ Page:رof_ Reviewer:
		١٨)			2nd F	Reviewer:
IE I N	OD: Arsenic (EPA SW 846 Method 6020	<i>iA</i>)				
	mples listed below were reviewed for eac on findings worksheets.	ch of the f	ollowing valida	ation areas. Valida	tion findings are	noted in attach
anuau	on mungs worksneets.					
	Validation Area			Com	ments	
I.	Sample receipt/Technical holding times	AIA				
II.	ICP/MS Tune	A				
III.	Instrument Calibration	A				
IV.	ICP Interference Check Sample (ICS) Analysis	A				
V.	Laboratory Blanks	A				
VI.	Field Blanks	N				
VII.	Matrix Spike/Matrix Spike Duplicates	N				
VIII.	Duplicate sample analysis	N			····	
IX.	Serial Dilution	N		P		
X.	Laboratory control samples	A	LCS			
XI.	Field Duplicates	N				
XII.	Internal Standard (ICP-MS)	N	notre	reveb		
XIII.	Sample Result Verification	N		/		
XIV	Overall Assessment of Data	LA				
ote:	N = Not provided/applicable R = Rins	o compound sate eld blank	s detected	D = Duplicate TB = Trip blank EB = Equipment bl	SB=Sour OTHER: ank	ce blank
C	lient ID			Lab ID	Matrix	Date
L	DW20-IT200			2010226-01	Sediment	06/04/20
5						
10				_		
11						

Notes:

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Duwamish AOC4

LDC Report Date:

November 23, 2020

Parameters:

Wet Chemistry

Validation Level:

Stage 2B

Laboratory:

Analytical Resources, Inc.

Sample Delivery Group (SDG): 2010226

Comple Identification	Laboratory Sample	Maduiss	Collection
Sample Identification	Identification	Matrix	Date
LDW20-IT200	2010226-01	Sediment	06/04/20
LDW20-SC164	2010226-04	Sediment	06/04/20
LDW20-SS164	2010226-09	Sediment	06/05/20
LDW20-SC155A	2010226-10	Sediment	06/08/20
LDW20-SC166A	2010226-11	Sediment	06/08/20
LDW20-SC166B	2010226-12	Sediment	06/08/20
LDW20-SC208A	2010226-13	Sediment	06/08/20
LDW20-IT200MS	20I0226-01MS	Sediment	06/04/20
LDW20-IT200MSD	2010226-01MSD	Sediment	06/04/20
LDW20-IT200DUP1	20I0226-01DUP1	Sediment	06/04/20
LDW20-IT200DUP2	20I0226-01DUP2	Sediment	06/04/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Lower Duwamish Waterway Quality Assurance Project Plan for Remedial Design of Upper Reach: Pre-Design Investigation (May 2020) and a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:

Total Organic Carbon by Environmental Protection Agency (EPA) SW 846 Method 9060A

Total Solids by Standard Method 2540G

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. Initial Calibration

All criteria for the initial calibration of each method were met.

III. Continuing Calibration

Continuing calibration frequency and analysis criteria were met for each method when applicable.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks with the following exceptions:

Blank ID	Blank ID Analyte		Associated Samples	
ICB/CCB	Total organic carbon	0.02%	LDW20-IT200 LDW20-SC164	

Data qualification by the laboratory blanks was based on the maximum contaminant concentration in the laboratory blanks in the analysis of each analyte. The sample concentrations were either not detected or were significantly greater than the concentrations found in the associated laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

VII. Duplicate Sample Analysis

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits.

VIII. Laboratory Control Samples/Standard Reference Materials

Laboratory control samples (LCS) were analyzed as required by the methods. Percent recoveries (%R) were within QC limits.

Standard reference materials (SRM) were analyzed as required by the methods. The results were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Sample Result Verification

Raw data were not reviewed for Stage 2B validation.

XI. Overall Assessment of Data

The analysis was conducted within all specifications of the methods. No results were rejected in this SDG.

The quality control criteria reviewed were met and are considered acceptable.

Duwamish AOC4
Wet Chemistry - Data Qualification Summary - SDG 2010226

No Sample Data Qualified in this SDG

Duwamish AOC4
Wet Chemistry - Laboratory Blank Data Qualification Summary - SDG 2010226

No Sample Data Qualified in this SDG

Duwamish AOC4
Wet Chemistry - Field Blank Data Qualification Summary - SDG 2010226

No Sample Data Qualified in this SDG

LDC #: 49590E6 SDG #: 2010226	VALIDATION COMPLETENESS WORKSHEET Stage 2B	Date: <u>∭\$ Z</u> C Page: ∽ of \
Laboratory: Analytical Resource	•	Reviewer: 2nd Reviewer:

METHOD: (Analyte) TOC (EPA SW846 9060A), Total Solids (SM 2540G)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
I.	Sample receipt/Technical holding times	A-A	
- 11	Initial calibration	1	
III.	Calibration verification	A	
IV	Laboratory Blanks	5~	
V	Field blanks	N	
VI.	Matrix Spike/Matrix Spike Duplicates	A	
VII.	Duplicate sample analysis	A	
VIII.	Laboratory control samples	A	LCS SRIM
IX.	Field duplicates	\mathcal{N}_{\perp}	
X.	Sample result verification	N	
ΧI	Overall assessment of data	IR	

Note: A = Acceptable

N = Not provided/applicable SW = See worksheet ND = No compounds detected

R = Rinsate FB = Field blank D = Duplicate

TB = Trip blank
EB = Equipment blank

SB=Source blank OTHER:

Client ID Lab ID Matrix Date LDW20-IT200 2010226-01 Sediment 06/04/20 2010226-02 LDW20-IT236 Sediment 06/04/20 LDW20-SC164 2010226-04 Sediment 06/04/20 2010226-09 LDW20-SS164 Sediment 06/05/20 LDW20-SC155A 2010226-10 Sediment 06/08/20 LDW20-SC166A 2010226-11 Sediment 06/08/20 LDW20-SC166B 2010226-12 Sediment 06/08/20 LDW20-SC208A 2010226-13 Sediment 06/08/20 LDW20-IT200MS 2010226-01MS Sediment 06/04/20 9 10 LDW20-IT200MSD 2010226-01MSD Sediment 06/04/20 2010226-01DUP4 LDW20-IT200DUP 2 11 Sediment 06/04/20 2010226-017RP2 LDW20-IT200TRP 12 Sediment 06/04/20 13

votes:		 	 	

VALIDATION FINDINGS WORKSHEET Sample Specific Element Reference

Page 1 of 1 Reviewer:CR

All elements are applicable to each sample as noted below.

Sample ID	-	Target Analyte List
1 to 8		Total solids
1, 3-8		тос
QC:		
9, 10		тос
	11	Total solids, TOC
		Total solids, TOC
	-	

LDC#: 49590E6

VALIDATION FINDINGS WORKSHEET <u>Laboratory Blank Contamination (PB/ICB/CCB)</u>

Page 1 of 1 Reviewer:CR

METHOD: Inorganics

Soil preparation factor applied (if applicable):

Sample Concentration, unless otherwise noted: %

Associated Samples: 1, 3

								-, -	 		
				Sample Identification							
Analyte (PB (units)	Maximum ICB/CCB (%)	um Action Level	No qual							
тос		0.02	0.02								

Comments: The listed analyte concentration is the highest ICB or CCB detected in the analysis. The action level, when applicable, is establised

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Duwamish AOC4

LDC Report Date:

November 11, 2020

Parameters:

Polychlorinated Dioxins/Dibenzofurans

Validation Level:

Stage 2B

Laboratory:

Analytical Resources, Inc.

Sample Delivery Group (SDG): 2010226

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
LDW20-IT236	2010226-02	Sediment	06/04/20
LDW20-IT310	2010226-08	Sediment	06/05/20
LDW20-IT268	2010226-20	Sediment	06/11/20

introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Lower Duwamish Waterway Quality Assurance Project Plan for Remedial Design of Upper Reach: Pre-Design Investigation (May 2020) and a modified outline of the USEPA National Functional Guidelines (NFG) for High Resolution Superfund Methods Data Review (April 2016). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polychlorinated Dioxins/Dibenzofurans by Environmental Protection Agency (EPA) Method 1613B

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered not detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. HRGC/HRMS Instrument Performance Check

Instrument performance was checked at the required frequency.

Retention time windows were established for all homologues. The chromatographic resolution between 2,3,7,8-TCDD and peaks representing any other unlabeled TCDD isomer was less than or equal to 25%.

The static resolving power was at least 10,000 (10% valley definition).

III. Initial Calibration and Initial Calibration Verification

A five point initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0% for unlabeled compounds and less than or equal to 35.0% for labeled compounds.

The ion abundance ratios for all PCDDs and PCDFs were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were within the QC limits for unlabeled compounds and labeled compounds.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

All of the continuing calibration results were within the QC limits for unlabeled compounds and labeled compounds with the following exceptions:

Date	Compound	Concentration (Limits)	Associated Samples	Flag	A or P
10/20/20	1,2,3,4,7,8-HxCDF	57.3 ng/mL (45-56)	All samples in SDG 2010226	J (all detects) UJ (all non-detects)	Р

The ion abundance ratios for all PCDDs and PCDFs were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks with the following exceptions:

Blank ID	Extraction Date	Compound	Concentration	Associated Samples
BIJ0365-BLK1	10/14/20	1,2,3,4,6,7,8-HpCDD OCDD	0.280 ng/Kg 1.78 ng/Kg	All samples in SDG 2010226

Sample concentrations were compared to concentrations detected in the laboratory blanks. The sample concentrations were either not detected or were significantly greater than the concentrations found in the associated laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples/Standard Reference Materials

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

Standard reference materials (SRM) were analyzed as required by the method. The results were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Labeled Compounds

All percent recoveries (%R) for labeled compounds used to quantitate target compounds were within QC limits.

XI. Compound Quantitation

All compound quantitations were within validation criteria with the following exceptions:

Sample	Compound	Flag	A or P
All samples in SDG 2010226	All compounds reported as estimated maximum possible concentration (EMPC) and greater than the reporting limit.	J (all detects)	А

Sample	Compound	Flag	A or P
All samples in SDG 20l0226	All compounds reported as estimated maximum possible concentration (EMPC) and less than the reporting limit.	U (all non-detects)	A

Raw data were not reviewed for Stage 2B validation.

XII. Target Compound Identifications

Raw data were not reviewed for Stage 2B validation.

XIII. System Performance

Raw data were not reviewed for Stage 2B validation.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Due to continuing calibration concentration and compounds reported as EMPC, data were qualified as estimated in three samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable.

Duwamish AOC4 Polychlorinated Dioxins/Dibenzofurans - Data Qualification Summary - SDG 2010226

Sample	Compound	Flag	A or P	Reason
LDW20-IT236 LDW20-IT310 LDW20-IT268	1,2,3,4,7,8-HxCDF	J (all detects) UJ (all non-detects)	Р	Continuing calibration (concentration)
LDW20-IT236 LDW20-IT310 LDW20-IT268	All compounds reported as estimated maximum possible concentration (EMPC) and greater than the reporting limit.	J (all detects)	А	Compound quantitation (EMPC)
LDW20-IT236 LDW20-IT310 LDW20-IT268	All compounds reported as estimated maximum possible concentration (EMPC) and less than the reporting limit.	U (all non-detects)	А	Compound quantitation (EMPC)

Duwamish AOC4

Polychlorinated Dioxins/Dibenzofurans - Laboratory Blank Data Qualification Summary - SDG 2010226

No Sample Data Qualified in this SDG

Duwamish AOC4

Polychlorinated Dioxins/Dibenzofurans - Field Blank Data Qualification Summary - SDG 2010226

No Sample Data Qualified in this SDG

	#: <u>49590E21</u> VALIDATIO #: 2010226		LETEN tage 2E		WORKSHEET			Date: <u>///<i>9/</i>z</u>
	ratory: Analytical Resources, Inc.		9				Revi	ewer://
METH	HOD: HRGC/HRMS Polychlorinated Diox	ins/Dibenzo	ofurans (I	ΞPA	Method 1613B)		2nd Revi	ewer: /
	amples listed below were reviewed for eation findings worksheets.	ch of the fo	ollowing v	alida ⁱ	tion areas. Validation	n fir	ndings are note	ed in attached
	Validation Area				Commo	ents		
I.	Sample receipt/Technical holding times	A						
II.	HRGC/HRMS Instrument performance check	A			·			
III.	Initial calibration/ICV	AND	RSD	<	20/75/0.	2	1= och	mits
IV.	Continuing calibration	w	ect	<u> </u>	ac limits			
V.	Laboratory Blanks	W	•					
VI.	Field blanks	N						
VII.	Matrix spike/Matrix spike duplicates	N	05					
VIII.	Laboratory control samples	AA	100	 >				
IX.	Field duplicates	λ/						
X.	Internal standards	A						
XI.	Compound quantitation RL/LOQ/LODs	ŹN			,			
XII.	Target compound identification	N						
XIII.	System performance	N						
XIV.	Overall assessment of data	A						
lote:	A = Acceptable ND = N N = Not provided/applicable R = Rir	lo compounds nsate ield blank	s detected		D = Duplicate TB = Trip blank EB = Equipment blank		SB=Source bl OTHER:	ank
	Client ID				Lab ID	N	latrix	Date
1	LDW20-IT236				2010226-02	s	ediment	06/04/20
2	LDW20-IT310				2010226-08	s	ediment	06/05/20
3	LDW20-IT268				2010226-20	s	ediment	06/11/20
4			<u>-</u>					
5								
6 _								
7								
8						T	-	
9							,	
10								
lotes:								
- 4	BEJ0365							

VALIDATION FINDINGS WORKSHEET

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA Method 1613B)

A. 2,3,7,8-TCDD	F. 1,2,3,4,6,7,8-HpCDD	K. 1,2,3,4,7,8-HxCDF	P. 1,2,3,4,7,8,9-HpCDF	U. Total HpCDD
B. 1,2,3,7,8-PeCDD	G. OCDD	L. 1,2,3,6,7,8-HxCDF	Q. OCDF	V. Total TCDF
C. 1,2,3,4,7,8-HxCDD	H. 2,3,7,8-TCDF	M. 2,3,4,6,7,8-HxCDF	R. Total TCDD	W. Total PeCDF
D. 1,2,3,6,7,8-HxCDD	I. 1,2,3,7,8-PeCDF	N. 1,2,3,7,8,9-HxCDF	S. Total PeCDD	X. Total HxCDF
E. 1,2,3,7,8,9-HxCDD	J. 2,3,4,7,8-PeCDF	O. 1,2,3,4,6,7,8-HpCDF	T. Total HxCDD	Y. Total HpCDF

Notes:	 		 	

LDC #: 49596ZX

VALIDATION FINDINGS WORKSHEET <u>Continuing Calibration</u>

Page:	/of /
Reviewer:	9

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA Method 1613B)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Mas a continuing calibration performed at the beginning of each 12 hour period?

Y N N/A Were all concentrations within method QC limits for unlabeled and labeled compounds?

N/A Did all continuing calibration standards meet the Ion Abundance Ratio criteria?

#	Date	Standard ID	Compound	conc (ng/mL)	Finding Ion Abundance Ratio	Associated Samples	Qualifications
	10/20/20	20/02002	0	58.2 (45-55)		MB	-/W/P
	, ,						
-	10/20/20	20/02016	K	57.3 (45-55	56)	All (dets)	1/11/2
	11/2						7
ļ							
<u> </u>							
-							

VALIDATION FINDINGS WOR/UHEET Blanks

Page: 1 of 1
Reviewer: PG

METHOD: HRGC/HRMS Dioxins (EPA Method 1613B)

Blank extraction date: 10/14/20 Blank analysis date: 10/20/20

Conc. units: ng/kg Associated samples: All qual U

Conc. units. ng/i	<u> </u>	Associated samples. All gual 0										
Compound	Blank ID		Sample Identification									
	BIJ0365-BLK1	5X										
F	0.280	1.4										
G	1.78	8.9										
						<u> </u>						

LDC #:49390£ >

VALIDATION FINDINGS WORKSHEET <u>Compound Quantitation and Reported RLs</u>

Page:	of
Reviewer:	PG

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA Method 1613B)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Υ	N	Ñ/A
Y	N(NA

Were the correct labeled compound, quantitation ions and relative response factors (RRF) used to quantitate the compound? Compound quantitation and RLs were adjusted to reflect all sample dilutions and dry weight factors (if necessary).

#	Date	Sample ID	Finding	Associated Samples	Qualifications
		All	All compounds reported as estimated maximum		Jdets/A
			possible concentration (EMPC) > RL		
<u> </u>					
		A1/	All compounds reported as estimated maximum		U/A
			possible concentration (EMPC) < RL		
<u> </u>					
1					
			All compounds flagged "X" due to chlorinated		-Jdets/A
			-diphenyl either interference		

Comments:	See sample calculation verification worksheet for recalculations

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Duwamish AOC4

LDC Report Date: November 16, 2020

Parameters: Semivolatiles

Validation Level: Stage 4

Laboratory: Analytical Resources, Inc.

Sample Delivery Group (SDG): 2010233

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
LDW20-IT319	2010233-07	Sediment	06/19/20
LDW20-IT267	2010233-10	Sediment	06/18/20
LDW20-IT260	2010233-11	Sediment	06/18/20
LDW20-IT360	2010233-12	Sediment	06/18/20
LDW20-IT259	2010233-13	Sediment	06/19/20
LDW20-IT256	2010233-14	Sediment	06/19/20
LDW20-IT233	2010233-15	Sediment	06/19/20
LDW20-IT229	2010233-16	Sediment	06/19/20
LDW20-IT229MS	2010233-16MS	Sediment	06/19/20
LDW20-IT229MSD	2010233-16MSD	Sediment	06/19/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Lower Duwamish Waterway Quality Assurance Project Plan for Remedial Design of Upper Reach: Pre-Design Investigation (May 2020) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Semivolatile Organic Compounds (SVOCs) by Environmental Protection Agency (EPA) SW 846 Method 8270E in Selected Ion Monitoring (SIM) mode

All sample results were subjected to Stage 4 data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

A decafluorotriphenylphosphine (DFTPP) tune was performed at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

For compounds where average relative response factors (RRFs) were utilized, percent relative standard deviations (%RSD) were less than or equal to 20.0%.

In the case where the laboratory used a calibration curve to evaluate the compounds, all coefficients of determination (r²) were greater than or equal to 0.990.

Average relative response factors (RRF) for all compounds were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 30.0% for all compounds.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all compounds.

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks with the following exceptions:

Blank ID	Extraction Date	Compound	Concentration	Associated Samples
BII0750-BLK1	09/28/20	Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenzo(a,h)anthracene	3.00 ug/Kg 3.09 ug/Kg 4.70 ug/Kg 4.34 ug/Kg 4.90 ug/Kg 10.3 ug/Kg 8.89 ug/Kg	All samples in SDG 2010233

Sample concentrations were compared to concentrations detected in the laboratory blanks. The sample concentrations were either not detected or were significantly greater than the concentrations found in the associated laboratory blanks with the following exceptions:

Sample	Compound	Reported Concentration	Modified Final Concentration
LDW20-IT319	Indeno(1,2,3-cd)pyrene	41.1 ug/Kg	41.1U ug/Kg
	Dibenzo(a,h)anthracene	10.5 ug/Kg	10.5U ug/Kg
LDW20-IT267	Indeno(1,2,3-cd)pyrene	18.3 ug/Kg	18.3U ug/Kg
	Dibenzo(a,h)anthracene	3.00 ug/Kg	3.00U ug/Kg
LDW20-IT260	Dibenzo(a,h)anthracene	19.6 ug/Kg	19.6U ug/Kg
LDW20-IT360	Dibenzo(a,h)anthracene	12.7 ug/Kg	12.7U ug/Kg
LDW20-IT259	Indeno(1,2,3-cd)pyrene	18.8 ug/Kg	18.8U ug/Kg
	Dibenzo(a,h)anthracene	4.55 ug/Kg	4.55U ug/Kg
LDW20-IT256	Dibenzo(a,h)anthracene	20.8 ug/Kg	20.8U ug/Kg
LDW20-IT233	Indeno(1,2,3-cd)pyrene	39.9 ug/Kg	39.9U ug/Kg
	Dibenzo(a,h)anthracene	10.3 ug/Kg	10.3U ug/Kg
LDW20-IT229	Indeno(1,2,3-cd)pyrene	28.7 ug/Kg	28.7U ug/Kg
	Dibenzo(a,h)anthracene	7.72 ug/Kg	7.72U ug/Kg

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Compound Quantitation

All compound quantitations were within validation criteria.

XIII. Target Compound Identifications

All target compound identifications were within validation criteria.

XIV. System Performance

The system performance was acceptable.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Due to laboratory blank contamination, data were qualified as not detected in eight samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable.

Duwamish AOC4 Semivolatiles – Data Qualification Summary - SDG 2010233

No Sample Data Qualified in this SDG

Duwamish AOC4 Semivolatiles - Laboratory Blank Data Qualification Summary - SDG 2010233

Sample	Compound	Modified Final Concentration	A or P
LDW20-IT319	Indeno(1,2,3-cd)pyrene Dibenzo(a,h)anthracene	41.1U ug/Kg 10.5U ug/Kg	А
LDW20-IT267	Indeno(1,2,3-cd)pyrene Dibenzo(a,h)anthracene	18.3U ug/Kg 3.00U ug/Kg	Α
LDW20-IT260	Dibenzo(a,h)anthracene	19.6U ug/Kg	Α
LDW20-IT360	Dibenzo(a,h)anthracene	12.7U ug/Kg	А
LDW20-IT259	Indeno(1,2,3-cd)pyrene Dibenzo(a,h)anthracene	18.8U ug/Kg 4.55U ug/Kg	Α
LDW20-IT256	Dibenzo(a,h)anthracene	20.8U ug/Kg	А
LDW20-IT233	Indeno(1,2,3-cd)pyrene Dibenzo(a,h)anthracene	39.9U ug/Kg 10.3U ug/Kg	А
LDW20-IT229	Indeno(1,2,3-cd)pyrene Dibenzo(a,h)anthracene	28.7U ug/Kg 7.72U ug/Kg	А

Duwamish AOC4
Semivolatiles - Field Blank Data Qualification Summary - SDG 2010233

No Sample Data Qualified in this SDG

LDC #: 49590F2b VALIDATION COMPLETENESS WORKSHEET SDG #: 2010233 Stage 4 Laboratory: Analytical Resources, Inc.

Date: /// // Page: /ot /
Reviewer: 2nd Reviewer: //

METHOD: GC/MS Polynuclear Aromatic Hydrocarbons (EPA SW 846 Method 8270E-SIM)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
l.	Sample receipt/Technical holding times	A	
11.	GC/MS Instrument performance check	A	
III.	Initial calibration/ICV	AA	RSD < 20/0. Y2 12/5-29/0
IV.	Continuing calibration	A	RSD = 20/0. Y2 10/= 29/0
V.	Laboratory Blanks	M	7
VI.	Field blanks	\ \	
VII.	Surrogate spikes	*	
VIII.	Matrix spike/Matrix spike duplicates	A	
IX.	Laboratory control samples	A	105/0
X.	Field duplicates	N	/
XI.	Internal standards	A	
XII.	Compound quantitation RL/LOQ/LODs	A	
XIII.	Target compound identification	A	
XIV.	System performance	A	
XV.	Overall assessment of data	\triangle	

Note: A = Acceptable

N = Not provided/applicable SW = See worksheet ND = No compounds detected

R = Rinsate

FB = Field blank

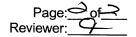
D = Duplicate TB = Trip blank

EB = Equipment blank

SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	LDW20-IT319	2010233-07	Sediment	06/19/20
2	LDW20-IT267	2010233-10	Sediment	06/18/20
3	LDW20-IT260	2010233-11	Sediment	06/18/20
4	LDW20-IT360	2010233-12	Sediment	06/18/20
5	LDW20-IT259	2010233-13	Sediment	06/19/20
6	LDW20-IT256	2010233-14	Sediment	06/19/20
7	LDW20-IT233	2010233-15	Sediment	06/19/20
8	LDW20-IT229	2010233-16	Sediment	06/19/20
9	LDW20-IT229MS	2010233-16MS	Sediment	06/19/20
10	LDW20-IT229MSD	2010233-16MSD	Sediment	06/19/20
11				
12				
13				
14				

VALIDATION FINDINGS CHECKLIST


Page: / of <u>~</u> Reviewer: _ Q___

Method: PAH (EPA SW 846 Method 8270D-SIM)

Validation Area	Yes	No	NA	Findings/Comments
	163	NO	INA	riidiigs/Comments
I. Technical holding times				
Were all technical holding times met?				
Was cooler temperature criteria met?	لــُــا			
II. GC/MS Instrument performance check (Not required)				
Were the DFTPP performance results reviewed and found to be within the specified criteria?				
Were all samples analyzed within the 12 hour clock criteria?				
IIIa. Initial calibration		<u></u>	·	
Did the laboratory perform a 5 point calibration prior to sample analysis?				
Were all percent relative standard deviations (%RSD) ≤ 20% and relative response factors (RRF) ≥ 0.05?				
Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit acceptance criteria of \geq 0.990?				
IIIb. Initial Calibration Verification			***************************************	
Was an initial calibration verification standard analyzed after each initial calibration for each instrument?				
Were all percent differences (%D) ≤30%?				
IV. Continuing calibration				
Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?	<u> </u>			
Were all percent differences (%D) \leq 20% and relative response factors (RRF) \geq 0.05?				
V. Laboratory Blanks				
Was a laboratory blank associated with every sample in this SDG?				
Was a laboratory blank analyzed for each matrix and concentration?				
Was there contamination in the laboratory blanks?				
VI. Field blanks				
Were field blanks identified in this SDG?			ł	
Were target compounds detected in the field blanks?		-		
VII. Surrogate spikes	<u></u>	l	<u> </u>	
Were all surrogate percent differences (%R) within QC limits?				
If 2 or more base neutral or acid surrogates were outside QC limits, was a reanalysis performed to confirm %R?	-			
If any percent recoveries (%R) was less than 10 percent, was a reanalysis performed to confirm %R?				
VIII. Matrix spike/Matrix spike duplicates	<u> </u>		1./	
Were matrix spike (MS) and matrix spike duplicate (MSD) analyzed in this SDG?	/			
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD)	/			
within the QC limits?	/	İ		

VALIDATION FINDINGS CHECKLIST

Validation Area	Yes	No	NA	Findings/Comr	ments
IX. Laboratory control samples		,			
Was an LCS analyzed per extraction batch?					
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?					
X. Field duplicates					
Were field duplicate pairs identified in this SDG?					
Were target compounds detected in the field duplicates?					
XI. Internal standards					
Were internal standard area counts within -50% or +100% of the associated calibration standard?	_				
Were retention times within ± 30 seconds of the associated calibration standard?	Ĺ	<u></u>			
XII. Compound quantitation				,	
Did the laboratory LOQs/RLs meet the QAPP LOQs/RLs?	/	•			
Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?		_			
Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?		_			
XIII. Target compound identification					
Were relative retention times (RRT's) within ± 0.06 RRT units of the standard?					
Did compound spectra meet specified EPA "Functional Guidelines" criteria?	/				
Were chromatogram peaks verified and accounted for?					:
XIV. System performance					
System performance was found to be acceptable.					
XV. Overall assessment of data					
Overall assessment of data was found to be acceptable.					

VALIDATION FINDINGS WORKSHEET

METHOD: GC/MS SVOA

A. Phenol	AA. 2-Chloronaphthalene	AAA. Butylbenzylphthalate	AAAA. Dibenzothiophene	A1. N-Nitrosodiethylamine
B. Bis (2-chloroethyl) ether	BB. 2-Nitroaniline	BBB. 3,3'-Dichlorobenzidine	BBBB. Benzo(a)fluoranthene	B1. N-Nitrosodi-n-butylamine
C. 2-Chlorophenol	CC. Dimethylphthalate	CCC. Benzo(a)anthracene	CCCC. Benzo(b)fluorene	C1. N-Nitrosomethylethylamine
D. 1,3-Dichlorobenzene	DD. Acenaphthylene	DDD. Chrysene	DDDD. cis/trans-Decalin	D1. N-Nitrosomorpholine
E. 1,4-Dichlorobenzene	EE. 2,6-Dinitrotoluene	EEE. Bis(2-ethylhexyl)phthalate	EEEE. Biphenyl	E1. N-Nitrosopyrrolidine
F. 1,2-Dichlorobenzene	FF. 3-Nitroaniline	FFF. Di-n-octylphthalate	FFFF. Retene	F1. Phenacetin
G. 2-Methylphenol	GG. Acenaphthene	GGG. Benzo(b)fluoranthene	GGGG. C30-Hopane	G1. 2-Acetylaminofluorene
H. 2,2'-Oxybis(1-chloropropane)	HH. 2,4-Dinitrophenol	HHH. Benzo(k)fluoranthene	HHHH. 1-Methylphenanthrene	H1. Pronamide
I. 4-Methylphenol	II. 4-Nitrophenol	III. Benzo(a)pyrene	IIII. 1,4-Dioxane	11. Methyl methanesulfonate
J. N-Nitroso-di-n-propylamine	JJ. Dibenzofuran	JJJ. Indeno(1,2,3-cd)pyrene	JJJJ. Acetophenone	J1. Ethyl methanesulfonate
K. Hexachloroethane	KK. 2,4-Dinitrotoluene	KKK. Dibenz(a,h)anthracene	KKKK. Atrazine	K1. o,o',o''-Triethylphosphorothioate
L. Nitrobenzene	LL. Diethylphthalate	LLL. Benzo(g,h,i)perylene	LLLL. Benzaldehyde	L1. n-Phenylene diamine
M. Isophorone	MM. 4-Chlorophenyl-phenyl ether	MMM. Bis(2-Chloroisopropyl)ether	MMMM. Caprolactam	M1. 1,4-Naphthoquinone
N. 2-Nitrophenol	NN. Fluorene	NNN. Aniline	NNNN. 2,6-Dichlorophenol	N1. N-Nitro-o-toluidine
O. 2,4-Dimethylphenol	OO. 4-Nitroaniline	OOO. N-Nitrosodimethylamine	OOOO. 1,2-Diphenylhydrazine	O1. 1,3,5-Trinitrobenzene
P. Bis(2-chloroethoxy)methane	PP. 4,6-Dinitro-2-methylphenol	PPP. Benzoic Acid	PPPP. 3-Methylphenol	P1. Pentachlorobenzene
Q. 2,4-Dichlorophenol	QQ. N-Nitrosodiphenylamine	QQQ. Benzyl alcohol	QQQQ. 3&4-Methylphenol	Q1. 4-Aminobiphenyl
R. 1,2,4-Trichlorobenzene	RR. 4-Bromophenyl-phenylether	RRR. Pyridine	RRRR. 4-Dimethyldibenzothiophene (4MDT)	R1. 2-Naphthylamine
S. Naphthalene	SS. Hexachlorobenzene	SSS. Benzidine	SSSS. 2/3-Dimethyldibenzothiophene (4MDT)	S1. Triphenylene
T. 4-Chloroaniline	TT. Pentachlorophenol	TTT. 1-Methylnaphthalene	TTTT. 1-Methyldibenzothiophene (1MDT)	T1. Octachlorostyrene
U. Hexachlorobutadiene	UU. Phenanthrene	UUU.Benzo(b)thiophene	UUUU 2,3,4,6-Tetrachlorophenol	U1. Famphur
V. 4-Chloro-3-methylphenol	VV. Anthracene	VVV.Benzonaphthothiophene	VVVV. 1,2,4,5-Tetrachlorobenzene	V1. 1,4-phenylenediamine
W. 2-Methylnaphthalene	WW. Carbazole	WWW.Benzo(e)pyrene	WWWW 2-Picoline	W1. Methapyrilene
X. Hexachlorocyclopentadiene	XX. Di-n-butylphthalate	XXX. 2,6-Dimethylnaphthalene	XXXX. 3-Methylcholanthrene	X1. Pentachloroethane
Y. 2,4,6-Trichlorophenol	YY. Fluoranthene	YYY. 2,3,5-Trimethylnaphthalene	YYYY. a,a-Dimethylphenethylamine	Y1. 3,3'-Dimethylbenzidine
Z. 2,4,5-Trichlorophenol	ZZ. Pyrene	ZZZ. Perylene	ZZZZ. Hexachloropropene	Z1. o-Toluidine

LDC #: 49590F2b

VALIDATION FINDINGS WORKSHEET Blanks

Page:_	1	_of_1	
Reviewer:		PG	

METHOD: GC/MS BNA (EPA SW 846 Method 8270E-SIM)

Blank extraction date: 9/28/20 Blank analysis date: 10/1/20

Conc. units: ug/kg Associated Samples: #/

Compound	Blank ID		Sample Identification							
	BII0750-BLK1	/	ಎ	3	4	5	6	7	8	
ccc	3.00									
DDD	3.09									
GGG	4.70									
ннн	4.34									
111	4.90									
JJJ >	10.3	411/4	18.3/4			18.8/4		39.9/4	28.7/4	
ккк >	8.89	10.5/4	3.00/11	19.5/4	12.7/4	4.55/11	20.8/4	10.3/4	7.72/4	
				- /- '			,	7 '		

LDC #: 49590F2b

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page:_	1	_of_	1	
Reviewer.	-	20		

METHOD: GC/MS SVOC (EPA SW 846 Method 8270D)

The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations:

 $RRF = (A_x)(C_{is})/(A_{is})(C_x)$ average RRF = sum of the RRFs/number of standards %RSD = 100 * (S/X)

 A_x = Area of compound, A_{is} = Area of associated internal standard C_x = Concentration of compound, C_{is} = Concentration of internal standard C_{is} = Mean of the RRFs

				Reported	Recalculated	Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compound (Reference Internal Standard)	RRF (5 std)	RRF (5 std)	Average RRF (initial)	Average RRF (initial)	%RSD	%RSD
1	ICAL	7/28/20	(1st internal standard)						
			(2nd internal standard)						
			(3rd internal standard)						
			(4th internal standard)						
			Chrysene (5th internal standard)	1.158585	1.158585	1.069113	1.069113	7.9	7.9
			Benzo(a)pyrene (6th internal standard)	1.021606	1.021606	0.9349588	0.9349588	10.9	10.9
2			(1st internal standard)						
			(2nd internal standard)						
			(3rd internal standard)						
			(4th internal standard)		l				<u> </u>
			(5th internal standard)						
			(6th internal standard)						
3			(1st internal standard)						
			(2nd internal standard)						
			(3rd internal standard)						
			(4th internal standard)						
			(5th internal standard)						
			(6th internal standard)		<u> </u>				

omments: Refer to Initial Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated
sults.

LDC #: 49590Fba

VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification

Page:_	1	_of_	1
Reviewe	-:	PC	}

METHOD: GC/MS SVOCs (EPA SW 846 Method 8270D)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF

Where: ave. RRF = initial calibration average RRF

 $RRF = (A_x)(C_{is})/(A_{is})(C_x)$

RRF = continuing calibration RRF

A_{is} = Area of associated internal standard

A_v = Area of compound, C_x = Concentration of compound, C_{is} = Concentration of internal standard

					Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compound (Reference Internal Standard)	Average RRF (initial)	RRF (CC)	RRF (CC)	%D	%D
1	NT820100110	10/1/20	(1st internal standard)					
			(2nd internal standard)					
			(3rd internal standard)					
			(4th internal standard)					
			Chrysene (5th internal standard)	1.069113	0.9772343	0.977234	8.6	8.6
			Benzo(a)pyrene (6th internal standard)	0.9349588	0.8620084	0.8620083	7.8	7.8
2			(1st internal standard)					
			(2nd internal standard)					
			(3rd internal standard)					
			(4th internal standard)					
			(5th internal standard)					
			(6th internal standard)					
3			(1st internal standard)					
			(2nd internal standard)					
			(3rd internal standard)					
			(4th internal standard)					
			(5th internal standard)					
			(6th internal standard)					

Comments: Refer to Continuing Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

VALIDATION FINDINGS WORKSHEET Surrogate Results Verification

Page:___/of_/ Reviewer:____

METHOD: GC/MS Semivolatiles (EPA SW 846 Method 8270C-SIM)

The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the following calculation:

% Recovery: SF/SS * 100

Where: SF = Surrogate Found

SS = Surrogate Spiked

Sample ID:

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Nitrobenzene-98 W - J [D	3.0	2.14765	7/6	71.6	
2-Fluorobiphenyl kk-dk		3.39745 2.53895	113	113.	
Temphenyl-d14 //-d10	V	2.53895	84.6	34.0	
	i				

Sample ID:

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Nitrobenzene-d5			·		
2-Fluorobiphenyl					
Terphenyl-d14					

Sample ID:

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Nitrobenzene-d5					
2-Fluorobiphenyl					
Terphenyl-d14					

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates Results Verification

METHOD: GC/MS PAHs (EPA SW 846 Method 8270D-SIM)

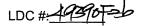
The percent recoveries (%R) and Relative Percent Difference (RPD) of the matrix spike and matrix spike duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * (SSC - SC)/SA

Where: SSC = Spiked sample concentration SA = Spike added

SC = Sample concentation

RPD = I MSC - MSC I * 2/(MSC + MSDC)


MSC = Matrix spike concentration

MSDC = Matrix spike duplicate concentration

MS/MSD samples: ___

Compound	Spike Adaled (/ ()		Sample Conceptration	Spiked Sample Concentration		Sample Spiked Sample Concentration Concentration			Spike Recovery	Matrix Spik Percent I		MS/M	
	MS	MSD		MS	MSD	Reported	Recalc	Reported	Recalc	Reported	Recalculated		
Acenaphthene													
Pyrene										,			
(11	300	300	35.0	258	277	74.5	74.3	80.7	80.7	6.94	7.10		
			·										
											i		

Comments: Refer to Matrix Spike/Matrix Spike Duplicates findings wo	orksheet for list of qualifications and associated samples when reported results do not agree within 10.0%
of the recalculated results.	

VALIDATION FINDINGS WORKSHEET Laboratory Control Sample/Laboratory Control Sample Duplicates Results Verification

Page:_	<u>of</u>	
Reviewer:	9_	

METHOD: GC/MS PAHs (EPA SW 846 Method 8270D-SIM)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * (SC/SA)

Where: SSC = Spike concentration

SA = Spike added

RPD = I LCSC - LCSDC I * 2/(LCSC + LCSDC)

LCSC = Laboratory control sample concentration LCSDC = Laboratory control sample duplicate concentration

LCS/LCSD samples: BITOTSO-BS

Compound	Ad	Spike Spike <u>I.C.S.</u> Added Concentration (\(\(\frac{1}{2} \) \) Percent Recovery		Concentration		LCSD Percent Recovery		I CS/I CSD		
	LCS	LCSD	LCS	LCSD	Reported	Recalc	Reported	Recalc	Reported	Recalculated
Acenaphthene										
Pyrene				196						
	300	300	183	185 NA	61.1	61.0	61.7	61.7	0.997	1.1
				,						
		i						_		
										

Comments: Refer to Laboratory Control Sample/Laboratory Control Sample Duplicates findings worksheet for list of qualifications and associated samples when reported
esults do not agree within 10.0% of the recalculated results.

%S

2.0

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page:_	
Reviewer:	7

METHOD: GC/MS PAHs (EPA SW 846 Method 8270D-SIM)

Percent solids, applicable to soil and solid matrices

Factor of 2 to account for GPC cleanup

Ý)N YN	N/A N/A	Were all reported results recalculated and Were all recalculated results for detected t	verified for all level IV samples? arget compounds agree within 10.0% of the reported results?
Con	centratio	$n = \frac{(A_{\nu})(I_{s})(V_{t})(DF)(2.0)}{(A_{is})(RRF)(V_{o})(V_{t})(\%S)}$	Example:
A_x	=	Area of the characteristic ion (EICP) for the compound to be measured	Sample I.D, _ :
A_{is}	=	Area of the characteristic ion (EICP) for the specific internal standard	
Is	=	Amount of internal standard added in nanograms (ng)	Conc. = \$2962 \(2.00 \) (500 \() \) () (500 \() \) (8602) ()
V _o	=	Volume or weight of sample extract in milliliters (ml) or grams (g).	1.50 11.10 0.000
V_{i}	=	Volume of extract injected in microliters (ul)	= 48.5 MS/2
V_t	=	Volume of the concentrated extract in microliters (ul)	
Df	=	Dilution Factor.	

#	Sample ID	Compound	Reported Concentration	Calculated Concentration ()	Qualification
		DDD	48.5		
ļ					
 					
ļ					
<u> </u>					

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Duwamish AOC4

LDC Report Date:

November 16, 2020

Parameters:

Polychlorinated Biphenyls

Validation Level:

Stage 2B

Laboratory:

Analytical Resources, Inc.

Sample Delivery Group (SDG): 2010233

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
LDW20-SC343	2010233-01	Sediment	06/15/20
LDW20-SC160A	2010233-02	Sediment	06/15/20
LDW20-SC160B	2010233-03	Sediment	06/15/20
LDW20-SC210A	2010233-04	Sediment	06/15/20
LDW20-SC204A	2010233-05	Sediment	06/15/20
LDW20-IT315	2010233-08	Sediment	06/18/20
LDW20-IT305	2010233-09	Sediment	06/18/20
LDW20-IT267	2010233-10	Sediment	06/18/20
LDW20-IT260	2010233-11	Sediment	06/18/20
LDW20-IT360	2010233-12	Sediment	06/18/20
LDW20-IT259	2010233-13	Sediment	06/19/20
LDW20-IT256	2010233-14	Sediment	06/19/20
LDW20-IT233	2010233-15	Sediment	06/19/20
LDW20-IT229	2010233-16	Sediment	06/19/20
LDW20-SC242A	2010233-17	Sediment	06/19/20
LDW20-SC242B	2010233-18	Sediment	06/19/20
LDW20-SC241A	2010233-19	Sediment	06/19/20
LDW20-SC241B	2010233-20	Sediment	06/19/20
LDW20-IT229MS	2010233-16MS	Sediment	06/19/20
LDW20-IT229MSD	2010233-16MSD	Sediment	06/19/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Lower Duwamish Waterway Quality Assurance Project Plan for Remedial Design of Upper Reach: Pre-Design Investigation (May 2020) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polychlorinated Biphenyls (PCBs) by Environmental Protection Agency (EPA) SW 846 Method 8082A

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0% for all compounds.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all compounds with the following exceptions:

Date	Standard	Column	Compound	%D	Associated Samples	Flag	A or P
09/03/20	SII0059-SCV1	2C	Aroclor-1260	21.5	All samples in SDG 20l0233	J (all detects)	А

III. Continuing Calibration

Continuing calibration was performed at required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all compounds with the following exceptions:

Date	Standard	Column	Compound	%D	Associated Samples	Flag	A or P
10/01/20	20100119ECD7	10	Aroclor-1248	23.8	LDW20-SC160A LDW20-SC160B LDW20-SC210A LDW20-SC204A LDW20-IT315 LDW20-IT305 LDW20-IT267 LDW20-IT260 LDW20-IT360 LDW20-IT259	J (all detects)	A
10/01/20	20100135ECD7	1C	Aroclor-1248	31.4	LDW20-IT256 LDW20-IT233 LDW20-IT229 LDW20-SC242A LDW20-SC242B LDW20-SC241A LDW20-SC241B	J (all detects)	А

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Surrogates/Internal Standards

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

All internal standard percent recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

VIII. Laboratory Control Samples/Standard Reference Materials

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

Standard reference materials (SRM) were analyzed as required by the method. The results were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Compound Quantitation

The sample results for detected compounds from the two columns were within 40% relative percent difference (RPD) with the following exceptions:

Sample	Compound	RPD	Flag	A or P
LDW20-SC160A	Aroclor-1254	48.7	J (all detects)	А
LDW20-SC210A	Aroclor-1254	53.8	J (all detects)	А

Raw data were not reviewed for Stage 2B validation.

XI. Target Compound Identification

Raw data were not reviewed for Stage 2B validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Due to ICV %D, continuing calibration %D, and RPD between two columns, data were qualified as estimated in eighteen samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable.

Duwamish AOC4 Polychlorinated Biphenyls - Data Qualification Summary - SDG 2010233

Sample	Compound	Flag	A or P	Reason
LDW20-SC343 LDW20-SC160A LDW20-SC160B LDW20-SC210A LDW20-SC204A LDW20-IT315 LDW20-IT367 LDW20-IT260 LDW20-IT260 LDW20-IT259 LDW20-IT259 LDW20-IT233 LDW20-IT233 LDW20-IT29 LDW20-SC242A LDW20-SC242B LDW20-SC241A LDW20-SC241B	Aroclor-1260	J (all detects)	A	Initial calibration verification (%D)
LDW20-SC160A LDW20-SC160B LDW20-SC210A LDW20-SC204A LDW20-IT315 LDW20-IT305 LDW20-IT267 LDW20-IT260 LDW20-IT259 LDW20-IT259 LDW20-IT256 LDW20-IT233 LDW20-IT229 LDW20-SC242A LDW20-SC242B LDW20-SC241B	Aroclor-1248	J (all detects)	Α	Continuing calibration (%D)
LDW20-SC160A LDW20-SC210A	Aroclor-1254	J (all detects)	А	Compound quantitation (RPD between two columns)

Duwamish AOC4

Polychlorinated Biphenyls - Laboratory Blank Data Qualification Summary - SDG 2010233

No Sample Data Qualified in this SDG

Duwamish AOC4

Polychlorinated Biphenyls - Field Blank Data Qualification Summary - SDG 2010233

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET LDC #: 49590F3b SDG #: 2010233

Laboratory: Analytical Resources, Inc.

Stage 2B

2nd Reviewer

METHOD: GC Polychlorinated Biphenyls (EPA SW846 Method 8082A)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
l.	Sample receipt/Technical holding times	A	
II.	Initial calibration/ICV	AIN	R50 < 20/0. lev < 20/0
III.	Continuing calibration	M	RS0 < 20/0. e/ < 20/0
IV.	Laboratory Blanks	A	/
V.	Field blanks	//	
VI.	Surrogate spikes	A	
VII.	Matrix spike/Matrix spike duplicates	A	
VIII.	Laboratory control samples / SRM	A/A	Les/D.
IX.	/ Field duplicates	N	/
X.	Compound quantitation/RL/LOQ/LODs	ŹN	
XI.	Target compound identification	N	
XII	Overall assessment of data	A	

Note: A = Acceptable

N = Not provided/applicable

SW = See worksheet

ND = No compounds detected

R = Rinsate FB = Field blank D = Duplicate TB = Trip blank

EB = Equipment blank

SB=Source blank OTHER:

	au un	1	T	
	Client ID	Lab ID	<u> Matrix</u>	Date
1	LDW20-SC343	2010233-01	Sediment	06/15/20
2 ¥	LDW20-SC160A	2010233-02	Sediment	06/15/20
3	LDW20-SC160B	2010233-03	Sediment	06/15/20
4 t	LDW20-SC210A	2010233-04	Sediment	06/15/20
5	LDW20-SC204A	2010233-05	Sediment	06/15/20
6	LDW20-IT315	2010233-08	Sediment	06/18/20
7	LDW20-IT305	2010233-09	Sediment	06/18/20
8	LDW20-IT267	2010233-10	Sediment	06/18/20
9	LDW20-IT260	2010233-11	Sediment	06/18/20
10	LDW20-IT360	2010233-12	Sediment	06/18/20
11	LDW20-IT259	2010233-13	Sediment	06/19/20
12_	LDW20-IT256	2010233-14	Sediment	06/19/20
13_	LDW20-IT233	2010233-15	Sediment	06/19/20
14	LDW20-IT229	2010233-16	Sediment	06/19/20
15_	LDW20-SC242A	2010233-17	Sediment	06/19/20
16_	LDW20-SC242B	2010233-18	Sediment	06/19/20
17_	LDW20-SC241A	2010233-19	Sediment	06/19/20

SDG _abc	#: 49590F3b VALIDATION COMPLETENES 6 #: 2010233 Stage 2B pratory: Analytical Resources, Inc. THOD: GC Polychlorinated Biphenyls (EPA SW846 Method 8082A			Date:/// <i>9/m</i> Page:_/of/ Reviewer:
18	LDW20-SC241B	2010233-20	Sediment	06/19/20
19	LDW20-IT229MS	2010233-16MS	Sediment	06/19/20
20_	LDW20-IT229MSD	2010233-16MSD	Sediment	06/19/20
21_				
22_				
23_				
lotes	:			
\neg				

VALIDATION FINDINGS WORKSHEET

METHOD: Pesticides

A. alpha-BHC	K. Endrin	U. Toxaphene	EE. 2,4'-DDT	OO. oxy-Chlordane
B. beta-BHC	L. Endosulfan II	V. Aroclor-1016	FF. Hexachlorobenzene	PP. cis-Nonachlor
C. delta-BHC	M. 4,4'-DDD	W. Aroclor-1221	GG. Chlordane	QQ. trans-Nonachlor
D. gamma-BHC	N. Endosulfan sulfate	X. Aroclor-1232	HH. Chlordane (Technical)	RR. cis-Chlordane
E. Heptachlor	O. 4,4'-DDT	Y. Aroclor-1242	II. p,p'-DDE	SS. trans-Chlordane
F. Aldrin	P. Methoxychlor	Z. Aroclor-1248	JJ. p,p'-DDD	TT. alpha-Endosulphan
G. Heptachlor epoxide	Q. Endrin ketone	AA. Aroclor-1254	KK. p,p'-DDT	UU. beta-Endosulphan
H. Endosulfan I	R. Endrin aldehyde	BB. Aroclor-1260	LL. o,p'-DDT	VV. Endosulphan Sulphate
I. Dieldrin	S. alpha-Chlordane	CC. 2,4'-DDD	MM. o,p'-DDE	WW. Mirex
J. 4,4'-DDE	T. gamma-Chlordane	DD. 2,4'-DDE	NN. o,p'-DDD	

Notes	es'	
	· · · · · · · · · · · · · · · · · · ·	

LDC #: 4959043b

VALIDATION FINDINGS WORKSHEET Initial Calibration Verification

Page:_	_ of
Reviewer:_	9
2nd Reviewer:	

METHOD: ___GC __ HPLC

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

What type of initial calibration verification calculation was performed? ___%D or ___%R

Was an initial calibration verification standard analyzed after each ICAL for each instrument?

Y/N N/A Did the initial calibration verification standards meet the %D / %R validation criteria of ≤20.0% / 80-120%?

#	Date	Standard ID	Detector/ Column	Compound	%D (Limit ≤ 20.0)	Associated Samples	Qualifications
	9/2/20	SII 0059-50V	1 2C	BB	21.5	All (dets)	VANA
ļ	//_	,					//
	10/ /00						
	10/1/20						
<u> </u>							
ļ							
ļ							
 							
\vdash							
-							

VALIDATION FINDINGS WORKSHEET Continuing Calibration

Page:_	<u></u>
Reviewer:	9
2nd Reviewer:	

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

€ N_N/A Were continuing calibration standards analyzed at the required frequencies? Y/N/N/A

Did the continuing calibration standards meet the %D validation criteria of <20.0%?

Level JV Only Y N/N/A

Were the retention times for all calibrated compounds within their respective acceptance windows?

#	Date	Standard ID	Detector/ Column	Compound	%D (Limit)	RT (limit)	Associated Samples	Qualifications
	10/1/20	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	10	Z	23.8	(2-11 (dets)	1/1/1/
l	1-11/20	20/1		<u></u>	- AD	(2-11 long	- XM XX
						(
	10/1/20	20/00/35607	10	Z	31.4	()	12-20 (dets)	1/1X/A
	1775	0, 1, 1, 1,				()		70.7
						()		
						()		
						()		
<u> </u>						()		
						()		
						()		
						()		
<u> </u>				<u>-</u>		(
						()		
ļ						()		
<u> </u>						()	<u> </u>	
						()	 	
						()		
<u> </u>						()	<u> </u>	
						()		
						()	 	
					<u> </u>			
						()		
						()		

VALIDATION FINDINGS WORKSHEET Compound Quantitation and Reported CRQLs

Page: _	
Reviewer:	

Level IV/D Only

Were CRQLs adjusted for sample dilutions, dry weight factors, etc.?

Did the reported results for detected target compounds agree within 10.0% of the recalculated results? Did the relative percent differences of detected compounds between two columns/detectors <40%?

<u></u>	If no, please see finding	s bellow.		
#	Compound Name	Sample ID	%RPD Between Two Columns/Detectors Limit (<u>≤</u> 40%)	Qualifications
	AA	2	48.7	Ilets/A
	//	4	53.8	
ļ				
		1		
ļ				
$\ - \ $				
 				
II 1		<u> </u>		

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Duwamish AOC4

LDC Report Date:

November 9, 2020

Parameters:

Arsenic

Validation Level:

Stage 2B

Laboratory:

Analytical Resources, Inc.

Sample Delivery Group (SDG): 2010233

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
LDW20-IT360	2010233-12	Sediment	06/18/20
LDW20-IT233	2010233-15	Sediment	06/19/20
LDW20-IT229	2010233-16	Sediment	06/19/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Lower Duwamish Waterway Quality Assurance Project Plan for Remedial Design of Upper Reach: Pre-Design Investigation (May 2020) and a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Arsenic by Environmental Protection Agency (EPA) SW 846 Method 6020A

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. ICPMS Tune

The mass calibration was within 0.1 AMU and the percent relative standard deviation (%RSD) was less than or equal to 5%.

III. Instrument Calibration

Initial and continuing calibrations were performed as required by the method.

The initial calibration verification (ICV) and continuing calibration verification (CCV) standards were within QC limits.

IV. ICP Interference Check Sample Analysis

The frequency of interference check sample (ICS) analysis was met. All criteria were within QC limits.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Duplicate Sample Analysis

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

IX. Serial Dilution

Serial dilution was not performed for this SDG.

X. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

XI. Field Duplicates

No field duplicates were identified in this SDG.

XII. Internal Standards (ICP-MS)

Raw data were not reviewed for Stage 2B validation.

XIII. Sample Result Verification

Raw data were not reviewed for Stage 2B validation.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

The quality control criteria reviewed were met and are considered acceptable.

Duwamish AOC4 Arsenic - Data Qualification Summary - SDG 2010233

No Sample Data Qualified in this SDG

Duwamish AOC4 Arsenic - Laboratory Blank Data Qualification Summary - SDG 2010233

No Sample Data Qualified in this SDG

Duwamish AOC4 Arsenic - Field Blank Data Qualification Summary - SDG 2010233

No Sample Data Qualified in this SDG

SDG i	#: 49590F4a VALIDATIO #: 2010233 atory: Analytical Resources, Inc.		LETENES tage 2B	S WORKSHEE	R	Date: _\S\ Page: _ of _ eviewer: eviewer:
The s	HOD: Arsenic (EPA SW 846 Method 6020 amples listed below were reviewed for ea tion findings worksheets.		ollowing valida	ition areas. Valida		
	Validation Area			Com	ments	
I.	Sample receipt/Technical holding times	A A				
II.	ICP/MS Tune	A				
III.	Instrument Calibration	A				
IV.	ICP Interference Check Sample (ICS) Analysis	A				
V.	Laboratory Blanks	A				
VI.	Field Blanks	N				*
VII.	Matrix Spike/Matrix Spike Duplicates	N				
VIII.	Duplicate sample analysis	N				
IX.	Serial Dilution	N				
X.	Laboratory control samples	A	LES			
XI.	Field Duplicates	\ \ \				
XII.	Internal Standard (ICP-MS)	N	2000	evieurd		
XIII.	Sample Result Verification	Ņ				
XIV	Overall Assessment of Data	A				
Note:	N = Not provided/applicable R = Rin	o compounds sate eld blank	detected	D = Duplicate TB = Trip blank EB = Equipment bl	SB=Sourc OTHER: ank	ce blank
	Client ID			Lab ID	Matrix	Date
1	LDW20-IT360			2010233-12	Sediment	06/18/20
	LDW20-IT233			2010233-15	Sediment	06/19/20
	LDW20-IT229			2010233-16	Sediment	06/19/20
4						
5						
6						
7						

10 11

Notes:

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Duwamish AOC4

LDC Report Date: November 9, 2020

Parameters: Wet Chemistry

Validation Level: Stage 2B

Laboratory: Analytical Resources, Inc.

Sample Delivery Group (SDG): 2010233

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
LDW20-SC343	2010233-01	Sediment	06/15/20
LDW20-SC160A	2010233-02	Sediment	06/15/20
LDW20-SC160B	2010233-03	Sediment	06/15/20
LDW20-SC210A	2010233-04	Sediment	06/15/20
LDW20-SC204A	2010233-05	Sediment	06/15/20
LDW20-IT315	2010233-08	Sediment	06/18/20
LDW20-IT305	2010233-09	Sediment	06/18/20
LDW20-IT267	2010233-10	Sediment	06/18/20
LDW20-IT260	2010233-11	Sediment	06/18/20
LDW20-IT360	2010233-12	Sediment	06/18/20
LDW20-IT259	2010233-13	Sediment	06/19/20
LDW20-IT256	2010233-14	Sediment	06/19/20
LDW20-IT233	2010233-15	Sediment	06/19/20
LDW20-IT229	2010233-16	Sediment	06/19/20
LDW20-SC242A	2010233-17	Sediment	06/19/20
LDW20-SC242B	2010233-18	Sediment	06/19/20
LDW20-SC241A	2010233-19	Sediment	06/19/20
LDW20-SC241B	2010233-20	Sediment	06/19/20
LDW20-SC343DUP1	20I0233-01DUP1	Sediment	06/15/20
LDW20-SC343DUP2	20I0233-01DUP2	Sediment	06/15/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Lower Duwamish Waterway Quality Assurance Project Plan for Remedial Design of Upper Reach: Pre-Design Investigation (May 2020) and a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:

Total Organic Carbon by Environmental Protection Agency (EPA) SW 846 Method 9060A

Total Solids by Standard Method 2540G

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. Initial Calibration

All criteria for the initial calibration of each method were met.

III. Continuing Calibration

Continuing calibration frequency and analysis criteria were met for each method when applicable.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks with the following exceptions:

Blank ID	Analyte	Maximum Concentration	Associated Samples
PB (prep blank)	Total organic carbon	0.02%	LDW20-SC343 LDW20-SC160A LDW20-SC160B LDW20-SC210A LDW20-SC204A LDW20-IT315 LDW20-IT305 LDW20-IT267 LDW20-IT260
ICB/CCB	Total organic carbon	0.03%	LDW20-SC343 LDW20-SC160A LDW20-SC160B LDW20-SC210A LDW20-SC204A LDW20-IT315 LDW20-IT305 LDW20-IT267 LDW20-IT260
ICB/CCB	Total organic carbon	0.02%	LDW20-IT360 LDW20-IT259 LDW20-IT256 LDW20-IT233 LDW20-IT229 LDW20-SC242A LDW20-SC242B LDW20-SC241A LDW20-SC241B

Data qualification by the laboratory blanks was based on the maximum contaminant concentration in the laboratory blanks in the analysis of each analyte. The sample concentrations were either not detected or were significantly greater than the concentrations found in the associated laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VII. Duplicate Sample Analysis

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits.

VIII. Laboratory Control Samples/Standard Reference Materials

Laboratory control samples (LCS) were analyzed as required by the methods. Percent recoveries (%R) were within QC limits.

Standard reference materials (SRM) were analyzed as required by the methods. The results were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Sample Result Verification

Raw data were not reviewed for Stage 2B validation.

XI. Overall Assessment of Data

The analysis was conducted within all specifications of the methods. No results were rejected in this SDG.

The quality control criteria reviewed were met and are considered acceptable.

Duwamish AOC4
Wet Chemistry - Data Qualification Summary - SDG 2010233

No Sample Data Qualified in this SDG

Duwamish AOC4
Wet Chemistry - Laboratory Blank Data Qualification Summary - SDG 2010233

No Sample Data Qualified in this SDG

Duwamish AOC4
Wet Chemistry - Field Blank Data Qualification Summary - SDG 2010233

No Sample Data Qualified in this SDG

LDC #: 49590F6

VALIDATION COMPLETENESS WORKSHEET

Stage 2B

Laboratory: Analytical Resources, Inc.

SDG #: 2010233

Reviewer: 2nd Reviewer:

METHOD: (Analyte) TOC (EPA SW846 9060A), Total Solids (SM 2540G)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
l.	Sample receipt/Technical holding times	AA	
11	Initial calibration	A	
111.	Calibration verification	A	
IV	Laboratory Blanks	Su	
V	Field blanks	N.	
VI.	Matrix Spike/Matrix Spike Duplicates	. N	CS
VII.	Duplicate sample analysis	A	
VIII.	Laboratory control samples	A	LCS, SRM)
IX.	Field duplicates	\/	, -
X	Sample result verification	N	
LxL	Overall assessment of data	A	

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet

ND = No compounds detected

R = Rinsate FB = Field blank D = Duplicate TB = Trip blank

EB = Equipment blank

SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	LDW20-SC343	2010233-01	Sediment	06/15/20
2	LDW20-SC160A	2010233-02	Sediment	06/15/20
3	LDW20-SC160B	2010233-03	Sediment	06/15/20
4	LDW20-SC210A	2010233-04	Sediment	06/15/20
5	LDW20-SC204A	2010233-05	Sediment	06/15/20
6	LDW20-IT315	2010233-08	Sediment	06/18/20
7	LDW20-IT305	2010233-09	Sediment	06/18/20
8	LDW20-IT267	2010233-10	Sediment	06/18/20
9	LDW20-IT260	2010233-11	Sediment	06/18/20
10	LDW20-IT360	2010233-12	Sediment	06/18/20
11	LDW20-IT259	2010233-13	Sediment	06/19/20
12	LDW20-IT256	2010233-14	Sediment	06/19/20
13	LDW20-IT233	2010233-15	Sediment	06/19/20
14	LDW20-IT229	2010233-16	Sediment	06/19/20
15	LDW20-SC242A	2010233-17	Sediment	06/19/20
16	LDW20-SC242B	2010233-18	Sediment	06/19/20
17	LDW20-SC241A	2010233-19	Sediment	06/19/20

LDC #:_	495 <u>90F6</u>	VALIDATION COMPLETENESS WORKSHEET
SDG #:_	2010233	Stage 2B
Laborato	ry: <u>Analytical l</u>	Resources, Inc.

METHOD: (Analyte) TOC (EPA SW846 9060A), Total Solids (SM 2540G)

18	LDW20-SC241B	2010233-20	Sediment	06/19/20
19	LDW20-SC343DUP 1	2010233-01DUP 1	Sediment	06/15/20
20	LDW20-SC343TRP Q Q2	2010233-01 1R1	Sediment	06/15/20
21				
22				
23				

All elements are applicable to each sample as noted below.

Sample ID	Target Analyte List	
1 to 18	Total solids, TOC	
QC:		
19, 20	total solids	

LDC #: 49590F6

VALIDATION FINDINGS WORKSHEET <u>Laboratory Blank Contamination (PB/ICB/CCB)</u>

Page 1 of 1 Reviewer:CR

METHOD: Inorganics

Soil preparation factor applied (if applicable):

Sample Concentration, unless otherwise noted: %

Associated Samples: 1

:				Sample Iden				ole Identific	ation	- 717	
Analyte	PB (%)	Maximum ICB/CCB (%)	Action Level	No qual							
TOC	0.02	0.03	0.2								

Sample Concentration, unless otherwise noted: %

Associated Samples: 10-18

						Samp	ole Identific	ation		
Analyte	PB (%)	Maximum ICB/CCB (%)	level i	No qual						
TOC		0.02	0.02							

Comments: The listed analyte concentration is the highest ICB or CCB detected in the analysis. The action level, when applicable, is establised

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Duwamish AOC4

LDC Report Date: November 11, 2020

Parameters: Polychlorinated Dioxins/Dibenzofurans

Validation Level: Stage 2B

Laboratory: Analytical Resources, Inc.

Sample Delivery Group (SDG): 2010233

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
LDW20-SS310	2010233-06	Sediment	06/18/20
LDW20-IT305	2010233-09	Sediment	06/18/20
LDW20-IT267	2010233-10	Sediment	06/18/20
LDW20-IT260	2010233-11	Sediment	06/18/20
LDW20-IT259	2010233-13	Sediment	06/19/20
LDW20-IT256	2010233-14	Sediment	06/19/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Lower Duwamish Waterway Quality Assurance Project Plan for Remedial Design of Upper Reach: Pre-Design Investigation (May 2020) and a modified outline of the USEPA National Functional Guidelines (NFG) for High Resolution Superfund Methods Data Review (April 2016). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polychlorinated Dioxins/Dibenzofurans by Environmental Protection Agency (EPA) Method 1613B

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered not detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. HRGC/HRMS Instrument Performance Check

Instrument performance was checked at the required frequency.

Retention time windows were established for all homologues. The chromatographic resolution between 2,3,7,8-TCDD and peaks representing any other unlabeled TCDD isomer was less than or equal to 25%.

The static resolving power was at least 10,000 (10% valley definition).

III. Initial Calibration and Initial Calibration Verification

A five point initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0% for unlabeled compounds and less than or equal to 35.0% for labeled compounds.

The ion abundance ratios for all PCDDs and PCDFs were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were within the QC limits for unlabeled compounds and labeled compounds.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

All of the continuing calibration results were within the QC limits for unlabeled compounds and labeled compounds with the following exceptions:

Date	Compound	Concentration (Limits)	Associated Samples	Flag	A or P
10/20/20	1,2,3,4,7,8-HxCDF	57.3 ng/mL (45-56)	All samples in SDG 2010233	J (all detects) UJ (all non-detects)	Р

The ion abundance ratios for all PCDDs and PCDFs were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks with the following exceptions:

Blank ID	Extraction Date	Compound	Concentration	Associated Samples
BIJ0365-BLK1	10/14/20	1,2,3,4,6,7,8-HpCDD OCDD	0.280 ng/Kg 1.78 ng/Kg	All samples in SDG 2010233

Sample concentrations were compared to concentrations detected in the laboratory blanks. The sample concentrations were either not detected or were significantly greater than the concentrations found in the associated laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples/Standard Reference Materials

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

Standard reference materials (SRM) were analyzed as required by the method. The results were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Labeled Compounds

All percent recoveries (%R) for labeled compounds used to quantitate target compounds were within QC limits.

XI. Compound Quantitation

All compound quantitations were within validation criteria with the following exceptions:

Sample	Compound	Flag	A or P
All samples in SDG 2010233	All compounds reported as estimated maximum possible concentration (EMPC) and greater than the reporting limit.	J (all detects)	А

Sample	Compound	Flag	A or P
All samples in SDG 2010233	All compounds reported as estimated maximum possible concentration (EMPC) and less than the reporting limit.	U (all non-detects)	A
LDW20-IT259	All results flagged "X" by the laboratory due to chlorinated diphenyl ether (CDPE) interference.	J (all detects)	А

Raw data were not reviewed for Stage 2B validation.

XII. Target Compound Identifications

Raw data were not reviewed for Stage 2B validation.

XIII. System Performance

Raw data were not reviewed for Stage 2B validation.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Due to continuing calibration concentration, compounds reported as EMPC, and CDPE interference, data were qualified as estimated in six samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable.

Duwamish AOC4 Polychlorinated Dioxins/Dibenzofurans - Data Qualification Summary - SDG 2010233

Sample	Compound	Flag	A or P	Reason
LDW20-SS310 LDW20-IT305 LDW20-IT267 LDW20-IT260 LDW20-IT259 LDW20-IT256	1,2,3,4,7,8-HxCDF	J (all detects) UJ (all non-detects)	Р	Continuing calibration (concentration)
LDW20-SS310 LDW20-IT305 LDW20-IT267 LDW20-IT260 LDW20-IT259 LDW20-IT256 All compounds reported as estimated maximum possible concentration (EMPC) and greater than the reporting limit.		J (all detects)	А	Compound quantitation (EMPC)
LDW20-SS310 LDW20-IT267 LDW20-IT260 LDW20-IT259 LDW20-IT256 All compounds reported as estimated maximum possible concentration (EMPC) and less than the reporting limit.		U (all non-detects)	А	Compound quantitation (EMPC)
LDW20-IT259	All results flagged "X" by the laboratory due to chlorinated diphenyl ether (CDPE) interference.	J (all detects)	А	Compound quantitation (CDPE interference)

Duwamish AOC4

Polychlorinated Dioxins/Dibenzofurans - Laboratory Blank Data Qualification Summary - SDG 2010233

No Sample Data Qualified in this SDG

Duwamish AOC4

Polychlorinated Dioxins/Dibenzofurans - Field Blank Data Qualification Summary - SDG 2010233

No Sample Data Qualified in this SDG

SDG	#: 49590F21 VALIDATIO #: 2010233 ratory: Analytical Resources, Inc.		LETENESS tage 2B	WORKSHEE	R	Date: ///9/2 Page: _/of _/ eviewer: eviewer:				
MET	ETHOD: HRGC/HRMS Polychlorinated Dioxins/Dibenzofurans (EPA Method 1613B)									
	samples listed below were reviewed for ea ation findings worksheets.	ch of the fo	ollowing valida	tion areas. Validat	iion findings are r	noted in attached				
	Validation Area			Com	ments					
I.	Sample receipt/Technical holding times	1								
II.	HRGC/HRMS Instrument performance check	A								
111.	Initial calibration/ICV	ATA	A5050	20/25/0.	revere.	Limits				
IV.	Continuing calibration	W	101E	ac limit	5					
V.	Laboratory Blanks	W								
VI.	Field blanks	N								
VII.	Matrix spike/Matrix spike duplicates	N,	09							
VIII.	Laboratory control samples /SRM	A 4	105							
IX.	Field duplicates	<u>//</u>								
X.	Internal standards	A								
XI.	Compound quantitation RL/LOQ/LODs	ŹN_								
XII.	Target compound identification	N								
XIII.	System performance	N								
XIV.	Overall assessment of data	1-A								
lote:	N = Not provided/applicable R = Rin	o compounds sate eld blank	s detected	D = Duplicate TB = Trip blank EB = Equipment bla	SB=Sourc OTHER: ank	e blank				
	Client ID			Lab ID	Matrix	Date				
1	LDW20-SS310			2010233-06	Sediment	06/18/20				
2	LDW20-IT305	· · · · · · · · · · · · · · · · · · ·		2010233-09	Sediment	06/18/20				
3	LDW20-IT267			2010233-10	Sediment	06/18/20				
4	LDW20-IT260			2010233-11	Sediment	06/18/20				
5	LDW20-IT259			2010233-13	Sediment	06/19/20				
6	LDW20-IT256	2010233-14	Sediment	06/19/20						
7										
8										
9										
10				<u> </u>						
lotes:	TT				T					
- 1					1 1	l				

VALIDATION FINDINGS WORKSHEET

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA Method 1613B)

A. 2,3,7,8-TCDD	F. 1,2,3,4,6,7,8-HpCDD	K. 1,2,3,4,7,8-HxCDF	P. 1,2,3,4,7,8,9-HpCDF	U. Total HpCDD
B. 1,2,3,7,8-PeCDD	G. OCDD	L. 1,2,3,6,7,8-HxCDF	Q. OCDF	V. Total TCDF
C. 1,2,3,4,7,8-HxCDD	H. 2,3,7,8-TCDF	M. 2,3,4,6,7,8-HxCDF	R. Total TCDD	W. Total PeCDF
D. 1,2,3,6,7,8-HxCDD	I. 1,2,3,7,8-PeCDF	N. 1,2,3,7,8,9-HxCDF	S. Total PeCDD	X. Total HxCDF
E. 1,2,3,7,8,9-HxCDD	J. 2,3,4,7,8-PeCDF	O. 1,2,3,4,6,7,8-HpCDF	T. Total HxCDD	Y. Total HpCDF

Notes:			 		 			 	
	-			 		-			

LDC #: 49590F>

VALIDATION FINDINGS WORKSHEET <u>Continuing Calibration</u>

Page:	of	/
Reviewer:	9	

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA Method 1613B)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

N N/A Was a continuing calibration performed at the beginning of each 12 hour period?

N/A Were all concentrations within method QC limits for unlabeled and labeled compounds?

Did all continuing calibration standards meet the Ion Abundance Ratio criteria?

#	Date	Standard ID	Compound	conc (ng/mL) Finding %D	Finding Ion Abundance Ratio	Associated Samples	Qualifications
	10/20/20	20/02002	0	58.2(45-55)		MB	4/W/P
	/ /						
	/ 2/1	2-11-0-11	K	173100 5/		All (dets+NO)	1/14/7
	10/20/00	20/02016		57.3(45-56)		1011 (0001110)	7/04/7
				<u> </u>			
				 			
					-		

VALIDATION FINDINGS WOR/UHEET Blanks

Page: 1 of 1
Reviewer: PG

METHOD: HRGC/HRMS Dioxins (EPA Method 1613B)

Blank extraction date: 10/14/20 Blank analysis date: 10/20/20

Conc. units: ng/kg

Associated samples: All qual U

Associated samples. 7th qual o										
Compound	Blank ID		Sample Identification							
	BIJ0365-BLK1	5X								
F	0.280	1.4								
G	1.78	8.9								
				<u> </u>						

LDC #:<u>495907</u>-/

VALIDATION FINDINGS WORKSHEET Compound Quantitation and Reported RLs

Page:	/of_	<u>/</u>
Reviewer:	PG	

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA Method 1613B)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Υ	N	N/A
Y	N	N/A
		_

Were the correct labeled compound, quantitation ions and relative response factors (RRF) used to quantitate the compound? Compound quantitation and RLs were adjusted to reflect all sample dilutions and dry weight factors (if necessary).

#	Date	Sample ID	Finding	Associated Samples	Qualifications
		All	All compounds reported as estimated maximum		Jdets/A
			possible concentration (EMPC) > RL		
		All	All compounds reported as estimated maximum		U/A
			possible concentration (EMPC) < RL		
<u></u>					
		5	All compounds flagged "X" due to chlorinated		Jdets/A
			diphenyl either interference		

Comments:	See sample calculation verification worksheet for recalculations
_	

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Duwamish AOC4

LDC Report Date:

November 11, 2020

Parameters:

Semivolatiles

Validation Level:

Stage 2B

Laboratory:

Analytical Resources, Inc.

Sample Delivery Group (SDG): 2010239

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
LDW20-SC380	2010239-13	Sediment	06/23/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Lower Duwamish Waterway Quality Assurance Project Plan for Remedial Design of Upper Reach: Pre-Design Investigation (May 2020) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Semivolatile Organic Compounds (SVOCs) by Environmental Protection Agency (EPA) SW 846 Method 8270E

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

A decafluorotriphenylphosphine (DFTPP) tune was performed at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0% for all compounds.

Average relative response factors (RRF) for all compounds were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 30.0% for all compounds.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all compounds.

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

IX. Laboratory Control Samples/Standard Reference Materials

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

Standard reference materials (SRM) were analyzed as required by the method. The results were within QC limits.

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Compound Quantitation

Raw data were not reviewed for Stage 2B validation.

XIII. Target Compound Identifications

Raw data were not reviewed for Stage 2B validation.

XIV. System Performance

Raw data were not reviewed for Stage 2B validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

The quality control criteria reviewed were met and are considered acceptable.

Duwamish AOC4
Semivolatiles - Data Qualification Summary - SDG 2010239

No Sample Data Qualified in this SDG

Duwamish AOC4
Semivolatiles - Laboratory Blank Data Qualification Summary - SDG 2010239

No Sample Data Qualified in this SDG

Duwamish AOC4 Semivolatiles - Field Blank Data Qualification Summary - SDG 2010239

No Sample Data Qualified in this SDG

SDG # .abora	t: 2010239 atory: <u>Analytical Resources, Inc.</u>	S	tage 2B	ESS WORKSHEI	R	Date: ///9/20 Page:_/of_/ eviewer: eviewer:	
	OD: GC/MS Semivolatiles (EPA SW 846 amples listed below were reviewed for ea			olidation areas. Valid	ation findings are r	oted in attached	
	innies listed below were reviewed for ea ion findings worksheets.	ch of the it	onowing va	alidation areas. Valid	ation findings are r	loted in attached	
	Validation Area Comments						
1.	Sample receipt/Technical holding times	1					
II.	GC/MS Instrument performance check	A					
III.	Initial calibration/ICV	AA	R52	0 < 20%.	KeV=3070	9	
IV.	Continuing calibration	1	GCV	= 2010			
V.	Laboratory Blanks	A					
VI.	Field blanks	Λ					
VII.	Surrogate spikes	A					
VIII.	Matrix spike/Matrix spike duplicates	1)	09				
IX.	Laboratory control samples / S-RM	AA	105	5			
X.	Field duplicates	//					
XI.	Internal standards	A					
XII.	Compound quantitation RL/LOQ/LODs	N					
XIII.	Target compound identification	N					
XIV.	System performance	Ņ					
XV.	Overall assessment of data	A					
lote:	N = Not provided/applicable R = Rin	o compounds sate eld blank	detected	D = Duplicate TB = Trip blank EB = Equipment l	SB=Sourc OTHER: olank	ce blank	
(Client ID			Lab ID	Matrix	Date	
1 L	DW20-SC380			2010239-13	Sediment	06/23/20	
2							
3							
4							
5							
3							
7							
3							
<u> </u>							
otes:					TI		
+							
+							

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Duwamish AOC4

LDC Report Date:

November 16, 2020

Parameters:

Semivolatiles

Validation Level:

Stage 2B

Laboratory:

Analytical Resources, Inc.

Sample Delivery Group (SDG): 2010239

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
LDW20-IT227	2010239-01	Sediment	06/19/20
LDW20-IT302	2010239-03	Sediment	06/22/20
LDW20-IT323	2010239-04	Sediment	06/22/20
LDW20-IT313	2010239-05	Sediment	06/23/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Lower Duwamish Waterway Quality Assurance Project Plan for Remedial Design of Upper Reach: Pre-Design Investigation (May 2020) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Semivolatile Organic Compounds (SVOCs) by Environmental Protection Agency (EPA) SW 846 Method 8270E in Selected Ion Monitoring (SIM) mode

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

A decafluorotriphenylphosphine (DFTPP) tune was performed at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

For compounds where average relative response factors (RRFs) were utilized, percent relative standard deviations (%RSD) were less than or equal to 20.0%.

In the case where the laboratory used a calibration curve to evaluate the compounds, all coefficients of determination (r^2) were greater than or equal to 0.990.

Average relative response factors (RRF) for all compounds were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 30.0% for all compounds.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all compounds with the following exceptions:

Date	Compound	%D	Associated Samples	Flag	A or P
10/06/20	Indeno(1,2,3-cd)pyrene Dibenzo(a,h)anthracene	30.4 30.2	All samples in SDG 2010239	J (all detects) J (all detects)	A

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks with the following exceptions:

Blank ID	Extraction Date	Compound	Concentration	Associated Samples
BII0800-BLK1	09/30/20	Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenzo(a,h)anthracene	1.10 ug/Kg 1.11 ug/Kg 2.07 ug/Kg 2.02 ug/Kg 2.09 ug/Kg 4.91 ug/Kg 4.56 ug/Kg	All samples in SDG 2010239

Sample concentrations were compared to concentrations detected in the laboratory blanks. The sample concentrations were either not detected or were significantly greater than the concentrations found in the associated laboratory blanks with the following exceptions:

Sample	Compound	Reported Concentration	Modified Final Concentration
LDW20-IT313	Dibenzo(a,h)anthracene	2.91 ug/Kg	2.91U ug/Kg

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

IX. Laboratory Control Samples/Standard Reference Materials

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

Standard reference materials (SRM) were analyzed as required by the method. The results were within QC limits.

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Compound Quantitation

Raw data were not reviewed for Stage 2B validation.

XIII. Target Compound Identifications

Raw data were not reviewed for Stage 2B validation.

XIV. System Performance

Raw data were not reviewed for Stage 2B validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Due to continuing calibration %D, data were qualified as estimated in four samples.

Due to laboratory blank contamination, data were qualified as not detected in one sample.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable.

Duwamish AOC4 Semivolatiles – Data Qualification Summary - SDG 2010239

Sample	Compound	Flag	A or P	Reason
LDW20-IT227 LDW20-IT302 LDW20-IT323 LDW20-IT313	Indeno(1,2,3-cd)pyrene Dibenzo(a,h)anthracene	J (all detects) J (all detects)	A	Continuing calibration (%D)

Duwamish AOC4 Semivolatiles - Laboratory Blank Data Qualification Summary - SDG 2010239

Sample	Compound	Modified Final Concentration	A or P
LDW20-IT313	Dibenzo(a,h)anthracene	2.91U ug/Kg	А

Duwamish AOC4
Semivolatiles - Field Blank Data Qualification Summary - SDG 2010239

No Sample Data Qualified in this SDG

SDG	#:49590G2bVALIDATIC #:20l0239 ratory: <u>Analytical Resources, Inc.</u>		LETENESS tage 2B	S WORKSHEE	R	Date: /////// Page: /of / eviewer: 4
ИЕТ	HOD: GC/MS Polynuclear Aromatic Hydr	ocarbons (E	EPA SW 846 I	Method 8270E-SI		OVIOWEI/C
	l l'allalana an ancienna l'Espa	l C 4l C	. 11	tion one of Malida	tian finalinan and u	
	samples listed below were reviewed for ea ation findings worksheets.	ach of the fo	ollowing valida	ition areas. Valida	tion findings are r	ioted in attached
			 			
	Validation Area			Com	ments	
<u>l.</u>	Sample receipt/Technical holding times	A				
11.	GC/MS Instrument performance check	A				
III.	Initial calibration/ICV	AA	\$500×3	20/0.8	12V = -32)	Vo.
IV.	Continuing calibration	W	ecve	20/0		
V.	Laboratory Blanks	W				
VI.	Field blanks	 				
VII.	Surrogate spikes	A				
VIII	. Matrix spike/Matrix spike duplicates	N	c5			
IX.	Laboratory control samples / FM	AA	109			
Χ.	Field duplicates	\mathbb{Z}_{N}				
XI.	Internal standards	X				
XII.	Compound quantitation RL/LOQ/LODs	N				
XIII.		N				
XIV		N				
XV.		A				
Note:	N = Not provided/applicable R = Ri	No compounds nsate ield blank	s detected	D = Duplicate TB = Trip blank EB = Equipment bl	SB=Sourc OTHER: lank	ce blank
	Client ID			Lab ID	Matrix	Date
1	LDW20-IT227			2010239-01	Sediment	06/19/20
2	LDW20-IT302			2010239-03	Sediment	06/22/20
3	LDW20-IT323			2010239-04	Sediment	06/22/20
4	LDW20-IT313			2010239-05	Sediment	06/23/20
5						
6						
7						
8						
9						
lotes:						
	1 1		1 1		1 1	

VALIDATION FINDINGS WORKSHEET

METHOD: GC/MS SVOA

A. Phenol	AA. 2-Chloronaphthalene	AAA. Butylbenzylphthalate	AAAA. Dibenzothiophene	A1.Dibenz(a,h)+(a,c)anthracene
B. Bis (2-chloroethyl) ether	BB. 2-Nitroaniline	BBB. 3,3'-Dichlorobenzidine	BBBB. Benzo(a)fluoranthene	B1.Benzo(j)fluoranthene
C. 2-Chlorophenol	CC. Dimethylphthalate	CCC. Benzo(a)anthracene	CCCC. Benzo(b)fluorene	C1.Benzo(b)naphtho(2,1-d)thiophene
D. 1,3-Dichlorobenzene	DD. Acenaphthylene	DDD. Chrysene	DDDD. cis/trans-Decalin	D1.
E. 1,4-Dichlorobenzene	EE. 2,6-Dinitrotoluene	EEE. Bis(2-ethylhexyl)phthalate	EEEE. Biphenyl	E1.
F. 1,2-Dichlorobenzene	FF. 3-Nitroaniline	FFF. Di-n-octylphthalate	FFFF. Retene	F1.
G. 2-Methylphenol	GG. Acenaphthene	GGG. Benzo(b)fluoranthene	GGGG. C30-Hopane	G1.
H. 2,2'-Oxybis(1-chloropropane)	HH. 2,4-Dinitrophenol	HHH. Benzo(k)fluoranthene	HHHH. 1-Methylphenanthrene	H1.
I. 4-Methylphenol	II. 4-Nitrophenol	III. Benzo(a)pyrene	IIII. 1,4-Dioxane	11.
J. N-Nitroso-di-n-propylamine	JJ. Dibenzofuran	JJJ. Indeno(1,2,3-cd)pyrene	JJJJ. Acetophenone	J1.
K. Hexachloroethane	KK. 2,4-Dinitrotoluene	KKK. Dibenz(a,h)anthracene	KKKK. Atrazine	K1.
L. Nitrobenzene	LL. Diethylphthalate	LLL. Benzo(g,h,i)perylene	LLLL. Benzaldehyde	L1.
M. Isophorone	MM. 4-Chlorophenyl-phenyl ether	MMM. Bis(2-Chloroisopropyl)ether	MMMM. Caprolactam	M1.
N. 2-Nitrophenol	NN. Fluorene	NNN. Aniline	NNNN. 2,6-Dichlorophenol	N1.
O. 2,4-Dimethylphenol	OO. 4-Nitroaniline	OOO. N-Nitrosodimethylamine	OOOO. 1,2-Diphenylhydrazine	01.
P. Bis(2-chloroethoxy)methane	PP. 4,6-Dinitro-2-methylphenol	PPP. Benzoic Acid	PPPP. 3-Methylphenol	P1.
Q. 2,4-Dichlorophenol	QQ. N-Nitrosodiphenylamine	QQQ. Benzyl alcohol	QQQQ. 3&4-Methylphenol	Q1.
R. 1,2,4-Trichlorobenzene	RR. 4-Bromophenyl-phenylether	RRR. Pyridine	RRRR. 4-Dimethyldibenzothiophene (4MDT)	R1.
S. Naphthalene	SS. Hexachlorobenzene	SSS. Benzidine	SSSS. 2/3-Dimethyldibenzothiophene (4MDT)	S1.
T. 4-Chloroaniline	TT. Pentachlorophenol	TTT. 1-Methylnaphthalene	TTTT. 1-Methyldibenzothiophene (1MDT)	T1.
U. Hexachlorobutadiene	UU. Phenanthrene	UUU.Benzo(b)thiophene	UUUU. 2,3,4,6-Tetrachlorophenol	U1.
V. 4-Chloro-3-methylphenol	VV. Anthracene	VVV.Benzonaphthothiophene	VVVV. 1,2,4,5-Tetrachlorobenzene	V1.
W. 2-Methylnaphthalene	WW. Carbazole	WWW.Benzo(e)pyrene	WWWW. Chrysene/Triphenylene	W1.
X. Hexachlorocyclopentadiene	XX. Di-n-butylphthalate	XXX. 2,6-Dimethylnaphthalene	XXXX.Benzo(j)+(k)fluoranthene	X1.
Y. 2,4,6-Trichlorophenol	YY. Fluoranthene	YYY. 2,3,5-Trimethylnaphthalene	YYYY. Naphthobenzophiophene	Y1.
Z. 2,4,5-Trichlorophenol	ZZ. Pyrene	ZZZ. Perylene	ZZZZ.Benzofluoranthenes, Total	Z1.

VALIDATION FINDINGS WORKSHEET Continuing Calibration

Page: ____of___ Reviewer: _____

METHOD: GC/MS BNA (EPA SW 846 Method 8270D)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?

	Y/N	<u>N/A</u>	Were percent differences	s (%D) ≤20 °	% and relative respons	e factors (RRF)) within the method criteria?
--	-----	------------	--------------------------	--------------	------------------------	-----------------	-------------------------------

#	Date	Standard ID	Compound	Finding %D (Limit: ≤20.0%)	Finding RRF (Limit)	Associated Samples	Qualifications
	10/6/20	NT8-20/00617	KKK HN	30.4 30.2		DII (det)	VW/A
	, , , , , , , , , , , , , , , , , , ,		- FFF	30.2			d'
			,				
			-				
					<u> </u>		<u> </u>

LDC#:<u>49590</u>

VALIDATION FINDINGS WORKSHEET Blanks

Page:_	/of /
Reviewer:	Q

METHOD: GC/MS BNA (EPA SW 846 Method 8270D)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

 $\frac{\cancel{N}}{N} = N/A$ Was a method blank analyzed for each matrix?

★ N N/A Was a method blank analyzed for each concentration preparation level?

(Y)N N/A Was a method blank associated with every sample?

√ N N/A

Was the blank contaminated? If yes, please see qualification below.

Blank extraction date: 980/20 Blank analysis date: 10/4/20

Conc. units: MS/ks

Associated Samples:

Compound	Blank ID		Sample Identification						
BI	0800-B	/ /	4						
	1.10		/						
DDD	1.11								
444	2.07								
AHH	2.02								
// /	2.09								
W	4.91								
KKK	4.56		291/4						

Blank extraction date:	Blank analys	is date:
Conc. units:		Associated Samples:
Compound	Blank ID	Sample Identification

Compound	Blank ID	Sample Identification						
		!						

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT:

Common contaminants such as the phthalates and TICs noted above that were detected in samples within ten times the associated method blank concentration were qualified as not detected, "U". Other contaminants within five times the method blank concentration were also qualified as not detected, "U".

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Duwamish AOC4

LDC Report Date:

November 16, 2020

Parameters:

Polychlorinated Biphenyls

Validation Level:

Stage 2B

Laboratory:

Analytical Resources, Inc.

Sample Delivery Group (SDG): 2010239

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
LDW20-IT227	2010239-01	Sediment	06/19/20
LDW20-IT221	2010239-02	Sediment	06/19/20
LDW20-SC225A	2010239-06	Sediment	06/22/20
LDW20-SC225B	2010239-07	Sediment	06/22/20
LDW20-SC206	2010239-08	Sediment	06/22/20
LDW20-SS400	2010239-09	Sediment	06/23/20
LDW20-SS425	2010239-10	Sediment	06/23/20
LDW20-SS225	2010239-11	Sediment	06/23/20
LDW20-SS242	2010239-12	Sediment	06/23/20
LDW20-IT317	2010239-14	Sediment	06/23/20
LDW20-IT311	2010239-15	Sediment	06/23/20
LDW20-SC209	2010239-16	Sediment	06/23/20
LDW20-SC213A	2010239-17	Sediment	06/23/20
LDW20-SC205B	2010239-18	Sediment	06/23/20
LDW20-IT221MS	2010239-02MS	Sediment	06/19/20
LDW20-IT221MSD	2010239-02MSD	Sediment	06/19/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Lower Duwamish Waterway Quality Assurance Project Plan for Remedial Design of Upper Reach: Pre-Design Investigation (May 2020) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polychlorinated Biphenyls (PCBs) by Environmental Protection Agency (EPA) SW 846 Method 8082A

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0% for all compounds.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all compounds with the following exceptions:

Date	Standard	Column	Compound	%D	Associated Samples	Flag	A or P
09/03/20	SII0059-SCV1	2C	Aroclor-1260	21.5	All samples in SDG 2010239	J (all detects)	А

III. Continuing Calibration

Continuing calibration was performed at required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all compounds with the following exceptions:

Date	Standard	Column	Compound	%D	Associated Samples	Flag	A or P
10/07/20	20100725ECD7	1C	Aroclor-1260	35.4	LDW20-SC206 LDW20-SS400 LDW20-SS425 LDW20-SS225 LDW20-SS242 LDW20-SC209 LDW20-SC213A LDW20-SC205B	J (all detects)	A
10/08/20	20100803ECD7	1C	Aroclor-1260	27.3	LDW20-IT317 LDW20-IT311	J (all detects)	А

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Surrogates/Internal Standards

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

All internal standard percent recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

VIII. Laboratory Control Samples/Standard Reference Materials

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

Standard reference materials (SRM) were analyzed as required by the method. The results were within QC limits with the following exceptions:

SRM ID	Compound	%R (Limits)	Associated Samples	Flag	A or P
BIJ0067-SRM1	Aroclor-1260	168 (38-167)	All samples in SDG 2010239	J (all detects)	Р

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Compound Quantitation

The sample results for detected compounds from the two columns were within 40% relative percent difference (RPD) with the following exceptions:

Sample	Compound	RPD	Flag	A or P
LDW20-SS400	Aroclor-1254 Aroclor-1260	41.0 45.3	J (all detects) J (all detects)	А
LDW20-SS425	Aroclor-1254	44.4	J (all detects)	А

Sample	Compound	RPD	Flag	A or P
LDW20-SS225	Aroclor-1254 Aroclor-1260	41.3 43.5	J (all detects) J (all detects)	A

Raw data were not reviewed for Stage 2B validation.

XI. Target Compound Identification

Raw data were not reviewed for Stage 2B validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Due to ICV %D, continuing calibration %D, SRM %R, and RPD between two columns, data were qualified as estimated in fourteen samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable.

Duwamish AOC4 Polychlorinated Biphenyls - Data Qualification Summary - SDG 2010239

Sample	Compound	Flag	A or P	Reason
LDW20-IT227 LDW20-IT221 LDW20-SC225A LDW20-SC225B LDW20-SC206 LDW20-SS400 LDW20-SS425 LDW20-SS225 LDW20-SS242 LDW20-IT317 LDW20-IT311 LDW20-SC209 LDW20-SC209 LDW20-SC213A LDW20-SC205B	Aroclor-1260	J (all detects)	A	Initial calibration verification (%D)
LDW20-SC206 LDW20-SS400 LDW20-SS425 LDW20-SS225 LDW20-SS242 LDW20-SC209 LDW20-SC213A LDW20-SC205B LDW20-IT317 LDW20-IT311	Aroclor-1260	J (all detects)	A	Continuing calibration (%D)
LDW20-IT227 LDW20-IT221 LDW20-SC225A LDW20-SC225B LDW20-SC206 LDW20-SS400 LDW20-SS425 LDW20-SS225 LDW20-SS242 LDW20-IT317 LDW20-IT311 LDW20-SC209 LDW20-SC209 LDW20-SC213A LDW20-SC205B	Aroclor-1260	J (all detects)	Р	Standard reference materials (%R)
LDW20-SS400 LDW20-SS225	Aroclor-1254 Aroclor-1260	J (all detects) J (all detects)	Α	Compound quantitation (RPD between two columns)
LDW20-SS425	Aroclor-1254	J (all detects)	А	Compound quantitation (RPD between two columns)

Duwamish AOC4 Polychlorinated Biphenyls - Laboratory Blank Data Qualification Summary - SDG 2010239

No Sample Data Qualified in this SDG

Duwamish AOC4 Polychlorinated Biphenyls - Field Blank Data Qualification Summary - SDG 2010239

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET LDC #: 49590G3b SDG #: 2010239

Laboratory: Analytical Resources, Inc.

Stage 2B

Reviewer: 2nd Reviewer:

METHOD: GC Polychlorinated Biphenyls (EPA SW846 Method 8082A)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
1.	Sample receipt/Technical holding times	A	
II.	Initial calibration/ICV	A HW	25 ≤ 20%. PN ≤ 20%.
III.	Continuing calibration	KW	co1≤20/1
IV.	Laboratory Blanks	A	/ .
V.	Field blanks	N,	
VI.	Surrogate spikes / 耳	-AA	
VII.	/ Matrix spike/Matrix spike duplicates	A	
VIII.	Laboratory control samples /SRM	\$/W	100/6
IX.	Field duplicates	<i>'</i> √	
X.	Compound quantitation/RL/LOQ/LODs	ŹN	
XI.	Target compound identification	N	
LXII	Overall assessment of data	A	

Note:

A = Acceptable

SW = See worksheet

N = Not provided/applicable

ND = No compounds detected

R = Rinsate

FB = Field blank

D = Duplicate

TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	LDW20-IT227	2010239-01	Sediment	06/19/20
2	LDW20-IT221	2010239-02	Sediment	06/19/20
3	LDW20-SC225A	2010239-06	Sediment	06/22/20
4	LDW20-SC225B	2010239-07	Sediment	06/22/20
5	LDW20-SC206	2010239-08	Sediment	06/22/20
6 Y	LDW20-SS400	2010239-09	Sediment	06/23/20
7	LDW20-SS425	2010239-10	Sediment	06/23/20
8 <i>}</i>	LDW20-SS225	2010239-11	Sediment	06/23/20
9	LDW20-SS242	2010239-12	Sediment	06/23/20
10	LDW20-IT317	2010239-14	Sediment	06/23/20
11	LDW20-IT311	2010239-15	Sediment	06/23/20
12	LDW20-SC209	2010239-16	Sediment	06/23/20
13	LDW20-SC213A	2010239-17	Sediment	06/23/20
14	LDW20-SC205B	2010239-18	Sediment	06/23/20
15	LDW20-IT221MS	2010239-02MS	Sediment	06/19/20
16	LDW20-IT221MSD	20I0239-02MSD	Sediment	06/19/20
17				

VALIDATION FINDINGS WORKSHEET

METHOD: Pesticides

A. alpha-BHC	K. Endrin	U. Toxaphene	EE. 2,4'-DDT	OO. oxy-Chlordane
B. beta-BHC	L. Endosulfan II	V. Aroclor-1016	FF. Hexachlorobenzene	PP. cis-Nonachlor
C. delta-BHC	M. 4,4'-DDD	W. Aroclor-1221	GG. Chlordane	QQ. trans-Nonachlor
D. gamma-BHC	N. Endosulfan sulfate	X. Aroclor-1232	HH. Chlordane (Technical)	RR. cis-Chlordane
E. Heptachlor	O. 4,4'-DDT	Y. Aroclor-1242	II. p,p'-DDE	SS. trans-Chlordane
F. Aldrin	P. Methoxychlor	Z. Aroclor-1248	JJ. p,p'-DDD	TT. alpha-Endosulphan
G. Heptachlor epoxide	Q. Endrin ketone	AA. Aroclor-1254	KK. p,p'-DDT	UU. beta-Endosuiphan
H. Endosulfan I	R. Endrin aldehyde	BB. Aroclor-1260	LL. o,p'-DDT	VV. Endosulphan Sulphate
I. Dieldrin	S. alpha-Chlordane	CC. 2,4'-DDD	MM. o,p'-DDE	WW. Mirex
J. 4,4'-DDE	T. gamma-Chlordane	DD. 2,4'-DDE	NN. o,p'-DDD	

Notes:	
--------	--

METHOD: ___GC __ HPLC

VALIDATION FINDINGS WORKSHEET Initial Calibration Verification

Page:_	∠of <u></u>
Reviewer:_	9
2nd Reviewer:	

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

What type of initial calibration verification calculation was performed? ___%D or ___%R

(Y/N N/A Was an initial calibration verification standard analyzed after each ICAL for each instrument?

Y/N/N/A Did the initial calibration verification standards meet the %D / %R validation criteria of <20.0% / 80-120%?

#	Date	Standard ID	Detector/ Column	Compound	%D (Limit ≤ 20.0)	Associated Samples	Qualifications
	9/3/20	SII 0059-SCH		BB	2/.5	All (defs)	WIH /B
ļ	//						7. /
-							

-							
-							
<u> </u>							
	<u> </u>						
<u></u>							
-							
-				1			

LDC #: 4459043b

METHOD: __/ GC __ HPLC

VALIDATION FINDINGS WORKSHEET Continuing Calibration

Page:_	<u>/</u> of_/_
Reviewer:	Q
2nd Reviewer:	

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Were continuing calibration standards analyzed at the required frequencies?

Y/N/A Did the continuing calibration standards meet the %D validation criteria of <20.0%?

Level IV Only

Were the retention times for all calibrated compounds within their respective acceptance windows?

#	Date	Standard ID	Detector/ Column	Compound	%D (Limit)	RT (limit)	Associated Samples	Qualifications
	10/1/20	20/00/252-001	10	35.4	35.4	(5-9.12-14 (dut)	VINA
<u> </u>	//	, ,		BB		()		
	6/					()	1 (0-1-)	
-	10H120	20/008472007	10	BB	26.4	()	15-16 (dets)	JW/A
-	, ,					(
	10/8/20	20/008032007	10	BB	27.3	()	10-11 (dets)	V/W/A
	//	/			/	(/ / '
ļ						()		
						(
-						(
ļ						(
 						(
 								
						(
						()		
						()		
			····			()		
						()		
						()		
<u></u>						(
1					1 111111	(
						()		

LDC #: 49590476

VALIDATION FINDINGS WORKSHEET Laboratory Control Samples (LCS)

Page:_ __	<u>of</u>
Reviewer:_	9
2nd Reviewer:	

METHOD: /GC __ HPLC

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Were a laboratory control samples (LCS) and laboratory control sample duplicate (LCSD) analyzed for each matrix in this SDG?

Were the LCS percent recoveries (%R) and relative percent differences (RPD) within the QC limits?

Level IV/D Only

Was an LCS analyzed every 20 samples for each matrix or whenever a sample extraction was performed?

#	LCS/LCSD ID	Compound	LCS %R (Limits)	LCSD %R (Limits)	RPD (Limits)	Associated Samples	Qualifications
	B=10067-SRM	BB	168 (38-161)	()	()	All (dets)	John A
	•	•	()	()	()	. ,	, , ,
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	(()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		

LDC #: 49490436

VALIDATION FINDINGS WORKSHEET <u>Compound Quantitation and Reported CRQLs</u>

Page: _	
Reviewer:	Q

METHOD: __/GC __ HPLC

Level IV/D Only
Y N/N/A

Were CRQLs adjusted for sample dilutions, dry weight factors, etc.?

Did the reported results for detected target compounds agree within 10.0% of the recalculated results?

Did the relative percent differences of detected compounds between two columns/detectors ≤40%?

If no, please see findings bellow.

#	Compound Name	Sample ID	%RPD Between Two Columns/Detectors Limit (≤ 40%)	Qualifications
	AA	6	41.0	State / A
	BB		41.0	
	AA	7	44.4	
		<u>'</u>		
	AH BB	8	41.3	
			43.5	
				,
			1	

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Duwamish AOC4

LDC Report Date:

November 23, 2020

Parameters:

Metals

Validation Level:

Stage 2B & 4

Laboratory:

Analytical Resources, Inc.

Sample Delivery Group (SDG): 2010239

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
LDW20-IT227	2010239-01	Sediment	06/19/20
LDW20-SC225A	2010239-06	Sediment	06/22/20
LDW20-SC225B	2010239-07	Sediment	06/22/20
LDW20-SS225	2010239-11	Sediment	06/23/20
LDW20-SC225AMS	2010239-06MS	Sediment	06/22/20
LDW20-SC225AMSD	2010239-06MSD	Sediment	06/22/20
LDW20-SC225ADUP	2010239-06DUP	Sediment	06/22/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Lower Duwamish Waterway Quality Assurance Project Plan for Remedial Design of Upper Reach: Pre-Design Investigation (May 2020) and a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:

Arsenic, Cadmium, Chromium, Copper, Lead, Silver, and Zinc by Environmental Protection Agency (EPA) SW 846 Method 6020A Mercury by EPA SW 846 Method 7471B

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results. Samples appended with a double asterisk on the cover page were subjected to Stage 4 data validation, which is comprised of the QC summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met with the following exceptions:

Sample	Analyte	Total Days From Sample Collection Until Analysis	Required Holding Time (in Days) From Sample Collection Until Analysis	Flag	A or P
LDW20-SC225A LDW20-SC225B LDW20-SC225ADUP	Mercury	105	28	J (all detects)	Р
LDW20-SS225	Mercury	104	28	J (all detects)	Р

II. ICPMS Tune

The mass calibration was within 0.1 AMU and the percent relative standard deviation (%RSD) was less than or equal to 5%.

III. Instrument Calibration

Initial and continuing calibrations were performed as required by the methods.

The initial calibration verification (ICV) and continuing calibration verification (CCV) standards were within QC limits.

IV. ICP Interference Check Sample Analysis

The frequency of interference check sample (ICS) analysis was met. All criteria were within QC limits.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

VIII. Duplicate Sample Analysis

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits.

IX. Serial Dilution

Serial dilution was not performed for this SDG.

X. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the methods. Percent recoveries (%R) were within QC limits.

XI. Field Duplicates

No field duplicates were identified in this SDG.

XII. Internal Standards (ICP-MS)

All internal standard percent recoveries (%R) were within QC limits.

XIII. Sample Result Verification

All sample result verifications were acceptable for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the methods. No results were rejected in this SDG.

Due to technical holding time, data were qualified as estimated in four samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable.

Duwamish AOC4

Metals - Data Qualification Summary - SDG 2010239

Sample	Analyte	Flag	A or P	Reason
LDW20-SC225A LDW20-SC225B LDW20-SC225ADUP LDW20-SS225	Mercury	J (all detects)	Р	Technical holding times

Duwamish AOC4

Metals - Laboratory Blank Data Qualification Summary - SDG 2010239

No Sample Data Qualified in this SDG

Duwamish AOC4

Metals - Field Blank Data Qualification Summary - SDG 2010239

No Sample Data Qualified in this SDG

N = Not provided/applicable SW = See worksheet R = Rinsate FB = Field blank TB = Trip blank EB = Equipment blank OTHER DESCRIPTION OF TREE FIELD Client ID Lab ID Matrix 1 LDW20-IT227 2010239-01 Sediment 2 LDW20-SC225A 2010239-06 Sediment 3 LDW20-SC225B 2010239-07 Sediment 4 LDW20-SS225 2010239-11 Sediment 5 LDW20-SC225AMS 2010239-06MS Sediment	
II. IcP/MS Tune III. Instrument Calibration IV. IcP Interference Check Sample (ICS) Analysis V. Laboratory Blanks VII. Matrix Spike/Matrix Spike Duplicates VIII. Duplicate sample analysis IX. Serial Dilution X. Laboratory control samples XI. Field Duplicates XII. Internal Standard (ICP-MS) XIII. Sample Result Verification XIV. Overall Assessment of Data Note: A = Acceptable N = Not provided/applicable R = Rinsate FB = Field blank Stage 4 for 6020A only Client ID Lab ID Matrix Sediment LDW20-SC225A 2010239-06 Sediment 5 Ediment 5 LDW20-SC225AMS 2010239-07 Sediment 5 Ediment	are noted in attached
II. ICP/MS Tune III. Instrument Calibration IV. ICP Interference Check Sample (ICS) Analysis V. Laboratory Blanks VII. Matrix Spike/Matrix Spike Duplicates VIII. Duplicate sample analysis IX. Serial Dilution X. Laboratory control samples XII. Internal Standard (ICP-MS) XIII. Sample Result Verification XIV. Overall Assessment of Data Note: A = Acceptable N = No t provided/applicable SW = See worksheet N = No t provided/applicable SW = See worksheet Client ID Lab ID Matrix Matr	
III. Instrument Calibration A	
IV. ICP Interference Check Sample (ICS) Analysis A	
V. Laboratory Blanks VI. Field Blanks VII. Matrix Spike/Matrix Spike Duplicates VIII. Duplicate sample analysis IX. Serial Dilution X. Laboratory control samples XI. Field Duplicates XII. Internal Standard (ICP-MS) XIII. Sample Result Verification XIV. Overall Assessment of Data Note: A = Acceptable N = Not provided/applicable SW = See worksheet Note: A = Rinsate FB = Field blank Stage 4 for 6020A only Client ID Lab ID Matrix LDW20-IT227 2010239-01 Sediment LDW20-SC225B LDW20-SC225B LDW20-SC225AMS Sediment LDW20-SC225AMS Sediment LDW20-SC225AMS Sediment Sediment	
VII. Matrix Spike/Matrix Spike Duplicates VIII. Duplicate sample analysis IX. Serial Dilution X. Laboratory control samples XI. Field Duplicates XII. Internal Standard (ICP-MS) XIII. Sample Result Verification XIV. Overall Assessment of Data Note: A = Acceptable Not provided/applicable SW = See worksheet Note: Not provided/applicable SW = Field blank Stage 4 for 6020A only Client ID Lab ID Matrix Sediment LDW20-SC225A 2010239-06 Sediment LDW20-SC225AMS 2010239-11 Sediment Sediment Sediment	
VII. Matrix Spike/Matrix Spike Duplicates VIII. Duplicate sample analysis IX. Serial Dilution X. Laboratory control samples XI. Field Duplicates XII. Internal Standard (ICP-MS) XIII. Sample Result Verification XIV Overall Assessment of Data Note: A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank R = Rinsate FB = Field blank Client ID Lab ID Matrix Matrix 2010239-01 Sediment LDW20-SC225A 2010239-07 Sediment LDW20-SC225AMS 2010239-11 Sediment Sediment	
VIII. Duplicate sample analysis IX. Serial Dilution X. Laboratory control samples IX. Field Duplicates XII. Internal Standard (ICP-MS) XIII. Sample Result Verification XIV. Overall Assessment of Data Note: A = Acceptable N = Not provided/applicable SW = See worksheet FB = Field blank EB = Equipment blank Stage 4 for 6020A only Client ID Lab ID Matrix LDW20-IT227 2010239-01 Sediment LDW20-SC225B 2010239-07 Sediment LDW20-SC225B 2010239-07 Sediment LDW20-SC225A Sediment LDW20-SC225AMS Sediment	
IX. Serial Dilution X. Laboratory control samples XI. Field Duplicates XII. Internal Standard (ICP-MS) XIII. Sample Result Verification XIV Overall Assessment of Data Note: A = Acceptable N = Not provided/applicable SW = See worksheet N = Not provided/applicable FB = Field blank Stage 4 for 6020A only Client ID Lab ID Matrix 1 LDW20-IT227 2010239-01 Sediment LDW20-SC225A 3 LDW20-SC225B 4 LDW20-SC225AMS 2010239-07 Sediment 5 LDW20-SC225AMS Sediment 5 LDW20-SC225AMS Sediment	
X. Laboratory control samples XI. Field Duplicates XII. Internal Standard (ICP-MS) XIII. Sample Result Verification XIV Overall Assessment of Data Note: A = Acceptable	
XII. Internal Standard (ICP-MS) XIII. Sample Result Verification XIV Overall Assessment of Data Note: A = Acceptable N = Not provided/applicable SW = See worksheet Note: A = Acceptable N = Not provided/applicable SW = See worksheet Client ID Lab ID Lab ID Matrix LDW20-IT227 2010239-06 Sediment LDW20-SC225B 4 LDW20-SC225AMS 2010239-07 Sediment 5 LDW20-SC225AMS 2010239-06MS Sediment 5 LDW20-SC225AMS	
XIII. Sample Result Verification XIV Overall Assessment of Data Note: A = Acceptable N = Not provided/applicable SW = See worksheet Client ID Lab ID Matrix LDW20-IT227 LDW20-SC225A LDW20-SC225A LDW20-SC225AMS MATRIX MATRIX MATRIX Construction A = Acceptable R = Rinsate R = Rinsate FB = Field blank B = Field blank B = Field blank Client ID Lab ID Matrix Matrix 2010239-01 Sediment A = Acceptable R = Rinsate FB = Field blank B = Equipment blank Matrix Client ID Lab ID Matrix Client ID Lab ID Matrix Client ID Lab ID Matrix Client ID Lab ID Matrix Client ID Lab ID Matrix Client ID Lab ID Matrix Client ID Lab ID Matrix Client ID Lab ID Matrix Client ID Lab ID Matrix Client ID LDW20-SC225A Client ID Client ID Lab ID Matrix Client ID Client ID Client ID Client ID Lab ID Matrix Client ID Cl	
XIII. Sample Result Verification XIV Overall Assessment of Data Note: A = Acceptable	
XIV Overall Assessment of Data Note: A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Trip blank EB = Equipment blank D = Duplicate TB = Trip blank EB = Trip blank EB = Equipment blank Stage 4 for 6020A only Client ID Lab ID Matrix 1 LDW20-IT227 2010239-01 Sediment 2 LDW20-SC225A 2010239-06 Sediment 3 LDW20-SC225B 2010239-07 Sediment 4 LDW20-SC225AMS 2010239-06MS Sediment	
Note: A = Acceptable ND = No compounds detected N = Deplicate SB = TB = Trip blank Stage 4 for 6020A only	e 24)
N = Not provided/applicable SW = See worksheet R = Rinsate FB = Field blank TB = Trip blank EB = Equipment blank OTH EB = Equipment blank Client ID Lab ID Matrix 1 LDW20-IT227 2010239-01 Sediment 2 LDW20-SC225A 2010239-06 Sediment 3 LDW20-SC225B 2010239-07 Sediment 4 LDW20-SS225 2010239-01MS Sediment 5 LDW20-SC225AMS 2010239-06MS Sediment	,
Client ID Lab ID Matrix 1 LDW20-IT227 2010239-01 Sediment 2 LDW20-SC225A 2010239-06 Sediment 3 LDW20-SC225B 2010239-07 Sediment 4 LDW20-SS225 2010239-11 Sediment 5 LDW20-SC225AMS 2010239-06MS Sediment	Source blank IER:
1 LDW20-IT227 2010239-01 Sediment 2 LDW20-SC225A 2010239-06 Sediment 3 LDW20-SC225B 2010239-07 Sediment 4 LDW20-SS225 2010239-11 Sediment 5 LDW20-SC225AMS 2010239-06MS Sediment	
2 LDW20-SC225A 2010239-06 Sediment 3 LDW20-SC225B 2010239-07 Sediment 4 LDW20-SS225 2010239-11 Sediment 5 LDW20-SC225AMS 2010239-06MS Sediment	Date
2 LDW20-SC225A 2010239-06 Sediment 3 LDW20-SC225B 2010239-07 Sediment 4 LDW20-SS225 2010239-11 Sediment 5 LDW20-SC225AMS 2010239-06MS Sediment	06/19/20
3 LDW20-SC225B 2010239-07 Sediment 4 LDW20-SS225 2010239-11 Sediment 5 LDW20-SC225AMS 2010239-06MS Sediment	
4 LDW20-SS225 2010239-11 Sediment 5 LDW20-SC225AMS 2010239-06MS Sediment	06/22/20
5 LDW20-SC225AMS 2010239-06MS Sediment	06/23/20
	06/22/20
6 LDW20-SC225AMSD 2010239-06MSD Sediment	
7 LDW20-SC225ADUP 2010239-06DUP Sediment	
8	
9	
10	
11	
12	
Notes:	

METHOD: Trace Metals (EPA SW 846 Methods 6010/6020/7000)						
Validation Area	Yes	No	NA	Comments		
I. Technical holding times						
Were all technical holding times met?	Х			for method 6020A		
Were all water samples preserved to a pH of <2.			Х			
II. ICP-MS Tune						
Were mass resolutions within 0.1 amu for all						
isotopes in the tuning solution?	X			1		
Were %RSDs of isoptoes in the tuning solution						
≤5%?	х					
III. Calibration						
Were all instuments calibrated daily?	Х					
Were the proper standards used?	Х					
Were all initial and continuing calibration						
verifications within the 90-110% (80-120% for						
mercury) QC limits?	Х		<u> </u>			
Were the low level standard checks within 70-						
130%?	x	l				
Were all initial calibration correlation coefficients						
within limits as specifed by the method?	x					
IV. Blanks						
Was a method blank associated with every						
sample in this SDG?	x		1			
Was there contamination in the method blanks?		X				
Was there contamination in the initial and						
continuing calibration blanks?		х				
V. Interference Check Sample						
Were the interference check samples performed						
daily?	Х					
Were the AB solution recoveries within 80-120%?	Х		<u> </u>			
VI. Matrix Spike/Matrix Spike Duplicates/Laborate	tory D	uplica	tes			
Were MS/MSD recoveries with the QC limits? (If	1					
the sample concentration exceeded the spike			1			
concentration by a factor of 4, no action was						
taken.)			x			
Were the MS/MSD or laboratory duplicate						
relative percent differences (RPDs) within the QC						
limits?			Х			
VII. Laboratory Control Samples						
Was a LCS analyzed for each batch in the SDG?	Х					
Were the LCS recoveries and RPDs (if applicable)						
within QC limits?	х					

Validation Area	Yes	No	NA	Comments
VIII. Internal Standards				
Were all percent recoveries within the 30-120%				
(60-125% for EPA Method 200.8) QC limits?	x			
If the recoveries were outside the limits, was a				
reanalysis performed?		1	Х	
IX. Serial Dilution			···	
Were all percent differences <10%?			Х	
Was there evidence of negative interference? If				
yes, professional judgement will be used to	}	1		
qualify the data.	1	1	Х	
X. Sample Result Verification				
Were all reporting limits adjusted to reflect				
sample dilutions?	x		1_	
Were all soil samples dry weight corrected?	Х			
XI. Overall Assessment of Data				
Was the overall assessment of the data found to				
be acceptable?	x			
XII. Field Duplicates				
Were field duplicates identifed in this SDG?		Х		
Were target analytes detected in the field				
duplicates?			Х	
XIII. Field Blanks				
Were field blanks identified in this SDG?		Х		
Were target analytes detected in the field blanks?			x	

LDC #: 49590G4a

CVAA

VALIDATION FINDINGS WORKSHEET Sample Specific Element Reference

Page 1 of 1 Reviewer:CR

All elements are applicable to each sample as noted below.

Hg

Sample ID	Target Analyte List
2 to 4	As, Cd, Cr, Cu, Pb, Ag, Zn, Hg
1	As
QC: 5-7	Hg
	Analysis Method
ICP	
ICP-MS	As, Cd, Cr, Cu, Pb, Ag, Zn

VALIDATION FINDINGS WORKSHEETS <u>Holding</u> Time

Page 1 of 1 Reviewer:CR

METHOD: Trace Metals (EPA SW 846 Methods 6010/6020/7000)

All samples were properly preserved (water samples to a pH of <2) and analyzed within the required holding time with the following exceptions.

Method:			Mercury by 7471B	, HT = 28 day	S
Sample ID	Sampling Date	Analysis Date	Total Time from Collection to Analysis (Days)	Qualifier	Det/ND
2,4,7235	7 6/22/2020	10/5/2020	105	J/R/P	Det
4	6/23/2020	10/5/2020	104	J/R/P	Det
			ļ <u>-</u>		

Page 1 of 1 Reviewer:CR

METHOD: Trace Metals (EPA SW 846 Methods 6010/6020/7000)

An intial calibration verification (ICV), continuing calibration verification (CCV), low level calibration check (LLCC), and interference check sample (ICSAB) percent recovery (%R) was recalculated for each type of analysis using the following formula:

%R = (Found/True) x 100

Found = concentration of each analyte measured in the analysis

True = concentration of each analyte in the source

Standard ID	Type of Analysis	Element	Found (ug/L)	True (ug/L)	Recalcuated %R	Reported %R	Acceptable (Y/N)
ICV	ICP-MS	Cu	51.2	50	102	102	
CCV	ICP-MS	Pb	50.9	50	102	102	
ICSAB	ICP-MS	Cd	19.44	20	97.2	97.2	

ICP-MS Tune	QC Parameter	Mass	Actual	Required
10/1/2020	Mass Axis	in	114.9	± 0.1 amu
10/1/2020	%RSD	In	0.9	≤ 5%

METHOD: Trace Metals (EPA SW 846 Methods 6010/6020/7000)

Percent recoveries (%R) for the laboratory control sample (LCS), matrix spike (MS), and post digestion spike (PDS) were recalculated using the following formula:

 $%R = (Found/True) \times 100$

Found = concentration of each analyte measured in the analysis. For the MS calculation, Found = SSR (Spiked Sample Result) - SR (Sample Result)

True = concentration of each analyte in the source

The sample and duplicate relative percent difference (RPD) was recalculated using the following formula:

RPD = (Absolute value(S-D)x 200) / (S+D)

S = Original sample concentration

D = Duplicate sample concentration

The serial dilution percent difference (%D) was recalculated using the following formula.

%D = (Absolute value (I - SDR)) x 100 / (I)

I = Initial sample result

SDR = Serial dilution result (with a 5x dilution applied)

					Recalcuated	Reported	
Sample ID	Type of Analysis	Element	Found/S/I	True/D/SDR	%R/RPD/%D	%R/RPD/%D	Acceptable (Y/N)
LCS	LCS	Ag	26.3	25	105	105	Υ
	MS	,					
	Duplicate						
	PDS						
	Serial dilution						

Page 1 of 1 Reviewer:

METHOD: Trace Metals (EPA SW 846 Methods 6010/6020/7000)

Analytes were recalculated and verified using the following equation:

Concentration = (Result from raw data x Final volume x Dilution factor) / (Percent solids x Initial weight)

								Recalcuated	
				Initial Weight/	Final Volume	Percent	Reported	Result	Acceptable
Sample ID	Analyte	Raw Data (unit)	Dilution	Volume (g)	(mL)	solids (%)	Result (mg/Kg)	(mg/Kg)	(Y/N)
1	As	13.002	20	1.059	50	60.01	20.5	20.5	Υ
2	Cr	12.003	20	1.034	50	55.13	21.1	21.1	Υ
3	Zn	53.604	20	1.039	50	52.74	97.8	97.8	Υ
4	Cd	0.089	20	1.048	50	52.83	0.16	0.16	Υ

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Duwamish AOC4

LDC Report Date:

November 9, 2020

Parameters:

Wet Chemistry

Validation Level:

Stage 2B

Laboratory:

Analytical Resources, Inc.

Sample Delivery Group (SDG): 2010239

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
LDW20-IT227	2010239-01	Sediment	06/19/20
LDW20-IT221	2010239-02	Sediment	06/19/20
LDW20-SC225A	2010239-06	Sediment	06/22/20
LDW20-SC225B	2010239-07	Sediment	06/22/20
LDW20-SC206	2010239-08	Sediment	06/22/20
LDW20-SS400	2010239-09	Sediment	06/23/20
LDW20-SS425	2010239-10	Sediment	06/23/20
LDW20-SS225	2010239-11	Sediment	06/23/20
LDW20-SS242	2010239-12	Sediment	06/23/20
LDW20-SC380	2010239-13	Sediment	06/23/20
LDW20-IT317	2010239-14	Sediment	06/23/20
LDW20-IT311	2010239-15	Sediment	06/23/20
LDW20-SC209	2010239-16	Sediment	06/23/20
LDW20-SC213A	2010239-17	Sediment	06/23/20
LDW20-SC205B	2010239-18	Sediment	06/23/20
LDW20-IT227MS	20I0239-01MS	Sediment	06/19/20
LDW20-IT227MSD	2010239-01MSD	Sediment	06/19/20
LDW20-IT227DUP1	20I0239-01DUP1	Sediment	06/19/20
LDW20-IT227DUP2	20I0239-01DUP2	Sediment	06/19/20
LDW20-SC225BDUP	20I0239-07DUP	Sediment	06/22/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Lower Duwamish Waterway Quality Assurance Project Plan for Remedial Design of Upper Reach: Pre-Design Investigation (May 2020) and a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:

Total Organic Carbon by Environmental Protection Agency (EPA) SW 846 Method 9060A

Total Solids by Standard Method 2540G

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. Initial Calibration

All criteria for the initial calibration of each method were met.

III. Continuing Calibration

Continuing calibration frequency and analysis criteria were met for each method when applicable.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks with the following exceptions:

Blank ID	Analyte	Maximum Concentration	Associated Samples
ICB/CCB	Total organic carbon	0.25%	LDW20-SC225A LDW20-SC225B LDW20-SC206 LDW20-SS400 LDW20-SS425 LDW20-SS225 LDW20-SS242 LDW20-IT317 LDW20-IT311 LDW20-SC209 LDW20-SC209 LDW20-SC213A LDW20-SC205B
ICB/CCB	Total organic carbon	0.03%	LDW20-IT221
ICB/CCB	Total organic carbon	0.02%	LDW20-IT227 LDW20-SC380

Data qualification by the laboratory blanks was based on the maximum contaminant concentration in the laboratory blanks in the analysis of each analyte. The sample concentrations were either not detected or were significantly greater than the concentrations found in the associated laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

VII. Duplicate Sample Analysis

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits.

VIII. Laboratory Control Samples/Standard Reference Materials

Laboratory control samples (LCS) were analyzed as required by the methods. Percent recoveries (%R) were within QC limits.

Standard reference materials (SRM) were analyzed as required by the methods. The results were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Sample Result Verification

Raw data were not reviewed for Stage 2B validation.

XI. Overall Assessment of Data

The analysis was conducted within all specifications of the methods. No results were rejected in this SDG.

The quality control criteria reviewed were met and are considered acceptable.

Duwamish AOC4
Wet Chemistry - Data Qualification Summary - SDG 2010239

No Sample Data Qualified in this SDG

Duwamish AOC4
Wet Chemistry - Laboratory Blank Data Qualification Summary - SDG 2010239

No Sample Data Qualified in this SDG

Duwamish AOC4
Wet Chemistry - Field Blank Data Qualification Summary - SDG 2010239

No Sample Data Qualified in this SDG

LDC #: 49590G6 VALIDATION COMPLETENESS WORKSHEET SDG #: 2010239 Stage 2B

Laboratory: Analytical Resources, Inc.

METHOD: (Analyte) TOC (EPA SW846 9060A), Total Solids (SM 2540G)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
I.	Sample receipt/Technical holding times	A A	
li_	Initial calibration	A	
111.	Calibration verification	A	
IV	Laboratory Blanks	SW	
V	Field blanks	\mathcal{N}_{\perp}	
VI.	Matrix Spike/Matrix Spike Duplicates	A	
VII.	Duplicate sample analysis	A	
VIII.	Laboratory control samples	A	LCS. SRM)
IX.	Field duplicates	$\Delta \Delta \Delta$	
X.	Sample result verification	N	
ΧI	Overall assessment of data	A	

Note:

A = Acceptable

N = Not provided/applicable SW = See worksheet ND = No compounds detected

R = Rinsate FB = Field blank detected D = Duplicate

TB = Trip blank
EB = Equipment blank

SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	LDW20-IT227	2010239-01	Sediment	06/19/20
2	LDW20-IT221	2010239-02	Sediment	06/19/20
3				
4				
5				
6	LDW20-SC225A	2010239-06	Sediment	06/22/20
7	LDW20-SC225B	2010239-07	Sediment	06/22/20
8	LDW20-SC206	2010239-08	Sediment	06/22/20
9	LDW20-SS400	2010239-09	Sediment	06/23/20
10	LDW20-SS425	2010239-10	Sediment	06/23/20
11	LDW20-SS225	2010239-11	Sediment	06/23/20
12	LDW20-SS242	2010239-12	Sediment	06/23/20
13	LDW20-SC380	2010239-13	Sediment	06/23/20
14_	LDW20-IT317	2010239-14	Sediment	06/23/20
15_	LDW20-IT311	2010239-15	Sediment	06/23/20
16_	LDW20-SC209	2010239-16	Sediment	06/23/20
17	LDW20-SC213A	2010239-17	Sediment	06/23/20

LDC #: 49590G6	VALIDATION COMPLETENESS WORKSHEET	
SDG #: 2010239	Stage 2B	F
Laboratory: Analytical Resource	ces Inc	Rev

Reviewer: ______2nd Reviewer: ______

METHOD: (Analyte) TOC (EPA SW846 9060A), Total Solids (SM 2540G)

18	LDW20-SC205B	2010239-18	Sediment	06/23/20
19_	LDW20-IT227MS	2010239-01MS	Sediment	06/19/20
20_	LDW20-IT227MSD	20I0239-01MSD	Sediment	06/19/20
21	LDW20-IT227DUP 1	2010239-01DUP 	Sediment	06/19/20
22	LDW20-IT2277TRP	2010239-01T RP	Sediment	06/19/20
23_	LDW20-SC225BDUP	2010239-07DUP	Sediment	06/22/20
24				
25_				
26				

INOL	cs	 	 		 	
		 	 ***************************************	***	 	

LDC #: 49590G6

VALIDATION FINDINGS WORKSHEET Sample Specific Element Reference

All elements are applicable to each sample as noted below.

Sample ID		Target Analyte List	
1 to 18		Total solids, TOC	
QC:			
19, 20		тос	
	21	Total solids	
	22	Total solids	
	23	Total solids	
	·		

VALIDATION FINDINGS WORKSHEET <u>Laboratory Blank Contamination (PB/ICB/CCB)</u>

Page 1 of 1 Reviewer:CR

METHOD: Inorganics

Soil preparation factor applied (if applicable):

Sample Concentration, unless otherwise noted: % Associated Samples: 6-12, 14-18

					Sample Identification				
Analyte	Maximum ICB/CCB (%)	Action Level	No qual						
TOC	0.25	0.25	·						

Sample Concentration, unless otherwise noted: % Associated Samples: 2

									mple Identification			
Analyte	PB (%)	Maximum ICB/CCB (%)	Action Level	No qual								
TOC		0.03	0.03									

Sample Concentration, unless otherwise noted: % Associated Samples: 1, 13

				Sample Identification						
Analyte	PB (%)	Maximum ICB/CCB (%)	Action Level	No qual						
TOC		0.02	0.02							

Comments: The listed analyte concentration is the highest ICB or CCB detected in the analysis. The action level, when applicable, is establised

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Duwamish AOC4

LDC Report Date:

November 11, 2020

Parameters:

Polychlorinated Dioxins/Dibenzofurans

Validation Level:

Stage 2B

Laboratory:

Analytical Resources, Inc.

Sample Delivery Group (SDG): 2010239

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
LDW20-IT302	2010239-03	Sediment	06/22/20
LDW20-SC206	2010239-08	Sediment	06/22/20
LDW20-IT317	2010239-14	Sediment	06/23/20
LDW20-IT311	2010239-15	Sediment	06/23/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Lower Duwamish Waterway Quality Assurance Project Plan for Remedial Design of Upper Reach: Pre-Design Investigation (May 2020) and a modified outline of the USEPA National Functional Guidelines (NFG) for High Resolution Superfund Methods Data Review (April 2016). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polychlorinated Dioxins/Dibenzofurans by Environmental Protection Agency (EPA) Method 1613B

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered not detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. HRGC/HRMS Instrument Performance Check

Instrument performance was checked at the required frequency.

Retention time windows were established for all homologues. The chromatographic resolution between 2,3,7,8-TCDD and peaks representing any other unlabeled TCDD isomer was less than or equal to 25%.

The static resolving power was at least 10,000 (10% valley definition).

III. Initial Calibration and Initial Calibration Verification

A five point initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0% for unlabeled compounds and less than or equal to 35.0% for labeled compounds.

The ion abundance ratios for all PCDDs and PCDFs were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were within the QC limits for unlabeled compounds and labeled compounds.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

All of the continuing calibration results were within the QC limits for unlabeled compounds and labeled compounds with the following exceptions:

Date	Compound	Concentration (Limits)	Associated Samples	Flag	A or P
10/20/20	1,2,3,4,7,8-HxCDF	57.3 ng/mL (45-56)	All samples in SDG 2010239	J (all detects)	Р

The ion abundance ratios for all PCDDs and PCDFs were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks with the following exceptions:

Extraction Blank ID Date		Compound	Concentration	Associated Samples	
BIJ0365-BLK1	10/14/20	1,2,3,4,6,7,8-HpCDD OCDD	0.280 ng/Kg 1.78 ng/Kg	All samples in SDG 2010239	

Sample concentrations were compared to concentrations detected in the laboratory blanks. The sample concentrations were either not detected or were significantly greater than the concentrations found in the associated laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples/Standard Reference Materials

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

Standard reference materials (SRM) were analyzed as required by the method. The results were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Labeled Compounds

All percent recoveries (%R) for labeled compounds used to quantitate target compounds were within QC limits.

XI. Compound Quantitation

All compound quantitations were within validation criteria with the following exceptions:

Sample	Compound	Flag	A or P
All samples in SDG 2010239	All compounds reported as estimated maximum possible concentration (EMPC) and greater than the reporting limit.	J (all detects)	А

Sample	Flag	A or P	
All samples in SDG 20l0239	All compounds reported as estimated maximum possible concentration (EMPC) and less than the reporting limit.	U (all non-detects)	Α
LDW20-IT302	All results flagged "X" by the laboratory due to chlorinated diphenyl ether (CDPE) interference.	J (all detects)	А

Sample	Compound	Finding	Criteria	Flag	A or P
LDW20-IT302	1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDD OCDF OCDD	Sample result exceeded calibration range.	Reported result should be within calibration range.	J (all detects) J (all detects) J (all detects) J (all detects) J (all detects)	Р

Raw data were not reviewed for Stage 2B validation.

XII. Target Compound Identifications

Raw data were not reviewed for Stage 2B validation.

XIII. System Performance

Raw data were not reviewed for Stage 2B validation.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Due to continuing calibration concentration, compounds reported as EMPC, CDPE interference, and results exceeding calibration range, data were qualified as estimated in four samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable.

Duwamish AOC4 Polychlorinated Dioxins/Dibenzofurans - Data Qualification Summary - SDG 2010239

Sample	Compound	Flag	A or P	Reason
LDW20-IT302 LDW20-SC206 LDW20-IT317 LDW20-IT311	1,2,3,4,7,8-HxCDF	J (all detects)	Р	Continuing calibration (concentration)
LDW20-IT302 LDW20-SC206 LDW20-IT317 LDW20-IT311	All compounds reported as estimated maximum possible concentration (EMPC) and greater than the reporting limit.	J (all detects)	А	Compound quantitation (EMPC)
LDW20-IT302 LDW20-SC206 LDW20-IT317 LDW20-IT311	All compounds reported as estimated maximum possible concentration (EMPC) and less than the reporting limit.	U (all non-detects)	А	Compound quantitation (EMPC)
LDW20-IT302	All results flagged "X" by the laboratory due to chlorinated diphenyl ether (CDPE) interference.	J (all detects)	А	Compound quantitation (CDPE interference)
LDW20-IT302	1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDD OCDF OCDD	J (all detects) J (all detects) J (all detects) J (all detects)	Р	Compound quantitation (exceeded range)

Duwamish AOC4

Polychlorinated Dioxins/Dibenzofurans - Laboratory Blank Data Qualification Summary - SDG 2010239

No Sample Data Qualified in this SDG

Duwamish AOC4

Polychlorinated Dioxins/Dibenzofurans - Field Blank Data Qualification Summary - SDG 2010239

No Sample Data Qualified in this SDG

SDG 7	#:49590G21VALIDATIO #:_20l0239 ratory:_Analytical Resources, Inc.		LETENESS tage 2B	S WORKSHEE	Re	Date: ///9/20 Page:of / eviewer:eviewer:
METH	HOD: HRGC/HRMS Polychlorinated Diox	cins/Dibenzo	ofurans (EPA	Method 1613B)		
	camples listed below were reviewed for eastion findings worksheets.	ach of the fo	ollowing valida	ition areas. Validat	ion findings are n	oted in attached
	Validation Area			_Com	ments	
l.	Sample receipt/Technical holding times	TA				
II.	HRGC/HRMS Instrument performance check	1				
III.	Initial calibration/ICV	AA	ASOC:	20/25/0.	KVERC	2 limits
IV.	Continuing calibration	M	cove	ac Limin	5	
V.	Laboratory Blanks	ail				-
VI.	Field blanks	N				
VII.	Matrix spike/Matrix spike duplicates	1	es			
VIII.	Laboratory control samples / SAM	ALA	116			
IX.	Field duplicates	1~//				
X.	Internal standards	TX				
XI.	Compound quantitation RL/LOQ/LODs	₹N				
XII.		N				
-	Target compound identification					
XIII.	System performance	N X				
XIV.	A = Acceptable ND = N N = Not provided/applicable R = Rii	No compounds insate Field blank	s detected	D = Duplicate TB = Trip blank EB = Equipment bla	SB=Sourc OTHER: ank	e blank
	Client ID			Lab ID	Matrix	Date
1	LDW20-IT302			2010239-03	Sediment	06/22/20
2	LDW20-SC206			2010239-08	Sediment	06/22/20
	LDW20-IT317			2010239-14	Sediment	06/23/20
	LDW20-iT311			2010239-15	Sediment	06/23/20
5						
6						
7						
8						
9						
10 lotes:				<u></u>		
					T	
					11	
		<u> </u>				

VALIDATION FINDINGS WORKSHEET

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA Method 1613B)

A. 2,3,7,8-TCDD	F. 1,2,3,4,6,7,8-HpCDD	K. 1,2,3,4,7,8-HxCDF	P. 1,2,3,4,7,8,9-HpCDF	U. Total HpCDD
B. 1,2,3,7,8-PeCDD	G. OCDD	L. 1,2,3,6,7,8-HxCDF	Q. OCDF	V. Total TCDF
C. 1,2,3,4,7,8-HxCDD	H. 2,3,7,8-TCDF	M. 2,3,4,6,7,8-HxCDF	R. Total TCDD	W. Total PeCDF
D. 1,2,3,6,7,8-HxCDD	I. 1,2,3,7,8-PeCDF	N. 1,2,3,7,8,9-HxCDF	S. Total PeCDD	X. Total HxCDF
E. 1,2,3,7,8,9-HxCDD	J. 2,3,4,7,8-PeCDF	O. 1,2,3,4,6,7,8-HpCDF	T. Total HxCDD	Y. Total HpCDF

Notes:			_

LDC #: 4959042/

VALIDATION FINDINGS WORKSHEET <u>Continuing Calibration</u>

Page:	_/of /
Reviewer:	9

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA Method 1613B)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Was a continuing calibration performed at the beginning of each 12 hour period?

Y/N/N/A Were all concentrations within method QC limits for unlabeled and labeled compounds?

(Y)N N/A Did all continuing calibration standards meet the Ion Abundance Ratio criteria?

#	Date	Standard ID	Compound	conc (ng/mL) *Finding %D	Finding Ion Abundance Ratio	Associated Samples	Qualifications
	10/20/20	20/02002	0	58.2 (45-55)		MB	VXX
	//			·			
]							
	11/1/0	204	K	573 (45-56)		All (dets)	1614
ļ	IOPOPO	20102016		5/2(75-36)		XII (2015)	1/4/
ļ							
<u></u>							
<u> </u>	-						
╂							
-							
 							

LDC #: 49590G21

VALIDATION FINDINGS WOR/UHEET Blanks

Page: 1 of 1
Reviewer: PG

METHOD: HRGC/HRMS Dioxins (EPA Method 1613B)

Blank extraction date: 10/14/20 Blank analysis date: 10/20/20

Conc. units: ng/kg

Associated samples: All_qual U

	one. units. hg/kg Associated sumples. All qual o										
Compound	Blank ID		Sample Identification								
	BIJ0365-BLK1	5X									
F	0.280	1.4									
G	1.78	8.9									
						!					
								<u></u>			

LDC #: 4959042

VALIDATION FINDINGS WORKSHEET Compound Quantitation and Reported RLs

Page:	
Reviewer:	PG

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA Method 1613B)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Y N (N/A Y N (N/A

Were the correct labeled compound, quantitation ions and relative response factors (RRF) used to quantitate the compound? Compound quantitation and RLs were adjusted to reflect all sample dilutions and dry weight factors (if necessary).

#	Date	Sample ID	Finding	Associated Samples	Qualifications
		All	All compounds reported as estimated maximum		Jdets/A
			possible concentration (EMPC) > RL		
 <u> </u>					
<u> </u>					
		All .	All compounds reported as estimated maximum		U/A
ļ			possible concentration (EMPC) < RL		
<u> </u>					
 					
<u> </u>					
<u></u>		/	All compounds flagged "X" due to chlorinated		Jdets/A
			diphenyl either interference		
 		,	a = a = = = = = 1/2	W60	10+6
			0, F, R, 4 > caleb 10	1	Heter
					, , , , , , , , , , , , , , , , , , ,

Comments:	See sample calculation verification worksheet for recalculations